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ABSTRACT
The simulation hypothesis is a philosophical theory, in which the entire universe and our objective reality are just simulated constructs.
Despite the lack of evidence, this idea is gaining traction in scientifi circles as well as in the entertainment industry. Recent scientifi devel-
opments in the fiel of information physics, such as the publication of the mass-energy-information equivalence principle, appear to support
this possibility. In particular, the 2022 discovery of the second law of information dynamics (infodynamics) facilitates new and interesting
research tools at the intersection between physics and information. In this article, we re-examine the second law of infodynamics and its
applicability to digital information, genetic information, atomic physics, mathematical symmetries, and cosmology, and we provide scientifi
evidence that appears to underpin the simulated universe hypothesis.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0173278

I. INTRODUCTION
In 2022, a new fundamental law of physics has been proposed

and demonstrated, called the second law of information dynamics,
or simply the second law of infodynamics.1 Its name is an analogy to
the second law of thermodynamics, which describes the time evolu-
tion of the physical entropy of an isolated system, which requires the
entropy to remain constant or to increase over time. In contrast to
the second law of thermodynamics, the second law of infodynamics
states that the information entropy of systems containing informa-
tion states must remain constant or decrease over time, reaching a
certain minimum value at equilibrium. This surprising observation
has massive implications for all branches of science and technol-
ogy. With the ever-increasing importance of information systems
such as digital information storage or biological information stored
in DNA/RNA genetic sequences, this new powerful physics law
offers an additional tool for examining these systems and their time
evolution.2

It is important to clearly distinguish between physical entropy
and information entropy. The physical entropy of a given system
is a measure of all its possible physical microstates compatible with
the macrostate, SPhys. This is a characteristic of the non-information

bearing microstates within the system. Assuming the same system,
and assuming that one is able to create N information states within
the same physical system (for example, by writing digital bits in it),
the effect of creating a number of N information states is to form
N additional information microstates superimposed onto the exist-
ing physical microstates. These additional microstates are informa-
tion bearing states, and the additional entropy associated with them
is called the entropy of information, SInfo. We can now defin the
total entropy of the system as the sum of the initial physical entropy
and the newly created entropy of information, Stot = SPhys + SInfo,
showing that the information creation increases the entropy of a
given system. It is also important to clarify that information state
is define as any physical state, process, or event that can contain
information in Shannon’s information theory framework.3 When
a set of n independent and distinctive information states are cre-
ated, X = {x1, x2, . . ., xn}, having a discrete probability distribution
P = {p1, p2, . . ., pn}, the average information content per state is given
by the Shannon information entropy formula3

H(X) =
n
∑
j=1

pj ⋅ logb
1
pj

. (1)
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The base of the logarithm, b, gives the units of information. When
b = 2, the function H(X) returns an information value in bits.
The function H(X) is maximum when the events xj have equal
probabilities of occurring, pj = 1/n.

The reader should not confuse the Shannon information
entropy H(X), with the entropy of the information bearing states,
SInfo. Although the two parameters are closely linked, they are rather
different quantities. If N information states are created within a
given system containing n independent and distinctive information
states, N ≥ n, then the additional possible states, also known as dis-
tinct messages in Shannon’s original formalism, are equivalent to the
number of information bearing microstates, Ω compatible with the
macrostate4

Ω = nN⋅H(X). (2)

The general entropy of the information bearing states is now derived
as follows:

SInfo = N ⋅ kb ⋅ ln n ⋅
n
∑
j=1

pj ⋅ logb
1
pj

(3)

or SInfo = N ⋅ kb ⋅ ln n ⋅ H(X), where kb = 1.380 64× 10−23 J/K is the
Boltzmann constant. The second law of infodynamics states that1

∂SInfo

∂t
≤ 0. (4)

Since kb is a constant and n is the number of distinct events (infor-
mation states), which is also a constant of the system, the decrease in
the entropy of the information states can only come from the reduc-
tion over time in the total number of states, N, or a reduction over
time in the Shannon entropy due to changes to the probabilities pj.

In what follows, we will examine a few diverse applications
of the second law of infodynamics and demonstrate the universal
nature of this new physics law, including the fact that it points to
the characteristics of a computational system, underpinning to some
degree the simulated universe hypothesis. Sections II and III have

been covered in greater detail in the 2022 article,1 but they are dis-
cussed briefl here to reinforce our point and introduce the context
of the second law of infodynamics to the reader.

II. SECOND LAW OF INFODYNAMICS
AND DIGITAL INFORMATION

A digital data storage system contains digital information
states, having two distinct states, X = {0, 1}, so n = 2 and probabili-
ties p = {p0, p1}. The base in relation (1) is taken as b = 2 for units of
digital bits. Assuming the system contains N bits, according to (2), it
will have a total number of possible microstates,

Ω = 2N⋅H(X). (5)

The entropy of the information bearing states for a digital informa-
tion system is

SInfo = N ⋅ kb ⋅ ln 2 ⋅
2
∑
j=1

pj ⋅ log2
1
pj

. (6)

The maximum Shannon entropy of this system is H(X) = 1, and it
can deviate slightly from this upper limit, but this value is stable over
time. Hence, in the case of digital information, the only parameter
that can drive the time evolution of the entropy of the information
bearing states is the total number of states, N. If N increases, then
the information entropy increases. However, there is no mechanism
that would result in spontaneous information being created with-
out external intervention (i.e., energy input). In a previous study,
we demonstrated that the only possible evolution of N over time is
down or constant,1 in accordance with the second law of infodynam-
ics. This is a very straightforward process and a direct consequence
of the second law of thermodynamics because, over time, the digital
states are eroded by thermal fluctuations leading to the self-erasure
of data. The higher the temperature of the environment, the more
probable the data self-erasure processes are. Hence, in the case of
digital information, the second law of infodynamics is rather triv-
ial and fully expected. In our previous study, we demonstrated this

FIG. 1. (a) Schematics of the word INFORMATION is written on a material in binary code using magnetic recording. Red denotes magnetization pointing out of the plane
and blue is magnetization pointing into the plane. (b)–(d) Time evolution of the digital magnetic recording information states simulated using micromagnetic Monte Carlo.
(b) Initial random state. (c) INFORMATION is written (t = 0 s). (d) Iteration 930 (t = 1395 s) showing the degradation of information states. Reproduced with permission from
M. M. Vopson and S. Lepadatu, AIP Adv. 12, 075310 (2022). Copyright 2022 AIP Publishing.
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using room temperature (300 K) micromagnetics modeling5 of a
granular magnetic thin fil structure with perpendicular uniaxial
anisotropy of Ka = 8.75 × 106 J/m3 and Ms = 1710 kA/m. Figure 1
shows the schematic of the word INFORMATION written digitally
onto a 400 × 550 × 2 nm3 magnetic thin fil structure, resulting in
a bit size of 50 × 50 nm2, which was allowed to evolve over time at
room temperature.

The average unit cell size (cubic) was V = 10−27 m3, which is
intentionally ∼1.9 times lower than the required size for a thermally
stable medium, in order to speed up the computation time. This
resulted in a relaxation time of 1.5 s, which corresponds to a single
iteration in the Monte Carlo algorithm. The simulations show that
the entropy of the information bearing states will remain constant or
decrease over time, and after a sufficientl long time, all information
states will become self-erased, leading to zero entropy of informa-
tion states. Figure 1(b) shows the simulated specimen before data
were recorded on it. Figure 1(c) shows the same sample with the
data written on it at time zero. Figure 1(d) shows the time evolution
of the data after 930 Monte Carlo cycles, showing the degradation
of the data. After 1990 cycles, the entire data got self-erased, and the
information entropy became zero.

III. SECOND LAW OF INFODYNAMICS
AND GENETIC INFORMATION

A very interesting information storage system is a DNA/RNA
sequence encoding biological information. This can be repre-
sented as a long string of the letters A, C, G, and T, where the
characters represent adenine (A), cytosine (C), guanine (G), and
thymine (T) [replaced with uracil (U) in RNA sequences]. There-
fore, within Shannon’s information theory framework, a typical
genome sequence can be represented as a probabilistic system of
four distinctive states, n = 4, X = {A,C,G,T} and probabilities
p = {pA, pC, pG, pT}. Using digital information units and Eq. (1),
we determine that the maximum Shannon information entropy is
H(X) = 2, and each nucleotide can encode a maximum of 2 bits:
A = 00, C = 01, G = 10, T = 11. For a given genomic sequence
containing N nucleotides, the total number of possible microstates
is

Ω = 4N⋅H(X). (7)

The entropy of the information bearing states of a genomic
sequence is

SInfo = N ⋅ kb ⋅ ln 4 ⋅
4
∑
j=1

pj ⋅ log2
1
pj

. (8)

The time evolution of the entropy of genetic DNA/RNA informa-
tion systems is given by the time evolution of the changes in their
nucleotide sequence, called genetic mutations. Genetic mutations
can take place via three mechanisms: (i) Single nucleotide poly-
morphisms (SNPs), where changes occur so that the number of
nucleotides N remains constant; (ii) deletions, where N decreases;
and (iii) insertions, where N is increasing.

Similar to the case of digital information, a reduction of
N would most likely result in a reduction of the overall entropy of
the information bearing states, so “deletion” mutations would auto-
matically fulfil the second law of infodynamics. In our previous

study, we examined real data from RNA sequences that underwent
only SNP mutations, which maintained the value of the N con-
stant, and the reduction in the information entropy came only from
Shannon’s information entropy function.1,2 Our test RNA sequences
were variants of the novel SARS-CoV-2 virus, which emerged in
December 2019 resulting in the COVID-19 pandemic. The refer-
ence RNA sequence of the SARS-CoV-2, collected in Wuhan, China
in December 2019 (MN908947),6 has 29 903 nucleotides, so N = 29
903. All analyzed variants had 29 903 nucleotides and have been col-
lected and sequenced at a later time, after undergoing an incremental
number of SNP mutations. Shannon information entropies of the
reference sequence and of the variants were computed using relation
(1) and previously developed software, GENIES.7,8

Remarkably, the results indicate a unique correlation between
the information and the dynamics of the genetic mutations by show-
ing that the Shannon information entropy, H(X), and the overall
information entropy of the SARS-CoV-2 variants (SInfo) computed
using Eq. (8) decrease linearly with the number of mutations and
over time, i.e., because number of mutations increase over time
(see Fig. 2). The corresponding code names of the genome vari-
ants extracted from the NCBI database9–14 and analyzed in this work
are shown next to each data point in Fig. 2. This result not only
confirm the universal validity of the second law of infodynamics
but also points to a possible governing mechanism of genetic muta-
tions,2 currently believed to be just random events. The observation
of the information entropic force that governs genetic mutations is
very powerful because it challenges the Darwinian view that genetic
mutations are complete random events and could be used to develop
predictive algorithms for genetic mutations before they occur.2 We
should acknowledge that, while all analyzed SARS-Cov-2 variants
showed a decrease in their information entropy as they underwent
genetic mutations, the data points presented in Fig. 2 have been
carefully selected to emphasize the linear trend.

Naturally, we asked whether the same RNA system would
display behavior consistent with the second law of infodynamics,
when the SARS-CoV-2 variants suffered “addition” mutations, so
the number of nucleotides N is no longer constant but becomes
larger than 29 903, increasing the information entropy. Using the
NCBI database, we searched all the sequenced SARS-CoV-2 variants

FIG. 2. Shannon information entropy values of variants of the SARS-CoV-2 virus
as a function of the number of SNP mutations per variant.
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from January 1 2020 to January 1 2022. We searched only complete
sequences with nomissing/undetermined nucleotides, and the result
was a total of 4.48 × 106 sequences. When we restricted the results to
only the sequences that had at least 29 903 nucleotides or more, then
48 450 sequences were identified Unfortunately, only one suffered
a mutation where the resultant number of nucleotides increased by
1–29 904. Hence, 98.92% of all mutations took place via “deletion,”
reducing the total number of nucleotides. Since only one genome out
of 4.48 × 106 appeared to increase the number of nucleotides, this is
statistically irrelevant. Hence, we concluded that, for this test case,
genetic mutations appear to take place in a way that reduces their
information entropy, mostly via a deletion mechanism or a SNP.
This is fully consistent with the second law of infodynamics, as a
deletion would automatically decrease the total information entropy,
and the SNPs have been shown to take place in a way that the infor-
mation entropy is again reduced due to a reduction in Shannon’s
information entropy.

We would also like to quote the famous Spiegelman’s exper-
iment that took place in 1972.15 In this experiment, Spiegelman
studied the evolution of a virus over 74 generations. The virus was
kept isolated in ideal conditions to survive, and with each genera-
tion, the virus was sequenced. The initial virus had 4500 base points,
and with each generation, the genome decreased consistently in size.
After 74 generations, the virus evolved to only 218 base points, show-
ing an interesting and unexplained reduction of its genome of over
95%. Just as the 2022 study on SARS-CoV-2,1 Spiegelman’s experi-
ment is fully consistent with the second law of infodynamics, which
requires the information entropy to remain constant or to decrease
over time, reaching a minimum value at equilibrium.

IV. SECOND LAW OF INFODYNAMICS
AND HUND’S RULE

Electronic states in atoms are fully described by four principal
quantum numbers: (a) the principal quantum number, n. This num-
ber determines the energy of a particular shell or orbit, and it takes
non-zero positive integral values n = 1, 2, 3, 4, . . . (b) the orbital
angular momentum quantum number, ℓ. This quantum number
describes the subshell, and gives the total angular momentum of
an electron due to its orbital motion. This quantum number takes
integral values restricted to ℓ = 0, 1, 2, . . ., n − 1. (c) The mag-
netic quantum number, mℓ. This quantum number determines the
component (projection) of the orbital angular momentum along a
specifi direction, usually the direction of an applied magnetic field
It takes integral values, and for a given value of ℓ, it may have
(2ℓ + 1) possible values: mℓ = ℓ, ℓ − 1, ℓ − 2, . . ., 0, −ℓ, . . ., −(ℓ − 1),
−ℓ. (d) The spin quantum number s, and the secondary spin quan-
tum number, ms. The spin quantum number s gives the eigenvalues
of the spin angular momentum operator, and it is related to the fact
that the electron has an intrinsic angular momentum called “spin”
or spin angular momentum, which results from the rotation of the
electron around an internal axis. The spin quantum number takes
the values s = n/2, where n is a positive integer, so that s = 0, 1/2, 1,
3/2, 2, . . .. The secondary quantum spin number ms determines the
direction (i.e., projection) of the spin angular momentum along the
direction of an applied magnetic field The allowed values of ms are
2s + 1 values from −s to +s in steps of 1. For example, an electron
has s = 1/2, so the allowed values of ms are −1/2 and +1/2.

The electrons occupy atomic shells according to Pauli’s exclu-
sion principle,16 which states that two or more identical fermions
cannot simultaneously occupy the same quantum state within a
quantum system. In the case of electrons in atoms, this means that
it is impossible for two electrons in a multi-electron atom to have
the same values of the four quantum numbers described above. For
example, if two electrons reside in the same orbital, then their n, ℓ,
and mℓ values are the same, so their ms must be different, imposing
that the electrons must have opposite half-integer spin projections
of 1/2 and −1/2.

However, in the case of multi-electron atoms, multiple electron
arrangements are possible while fulfillin Pauli’s exclusion principle.

In order to determine the electron population of an atomic
orbital corresponding to the ground state of a multi-electron atom,
German physicist Friedrich Hund formulated in 1927 a set of
rules17 derived from phenomenological observations. These are
called Hund’s rules, and when used in conjunction with Pauli’s
exclusion principle, they are useful in atomic physics to deter-
mine the electron population of atoms corresponding to the ground
state.

To explain this, let us assume that an atom has three elec-
trons on its p orbital. Figure 3 shows the three allowed ground
state distinctive configuration that fulfil Pauli’s exclusion princi-
ple, resulting in total spin quantum values of 1/2, 3/2, and 1/2,
respectively.

The correct electronic arrangement is given by Hund’s firs
rule, which is the most important, and it is simply called Hund’s
rule. This states that the lowest energy atomic state is the one that
maximizes the total spin quantum number, meaning simply that the
orbitals of the subshell are each occupied singly with electrons of
parallel spin before double occupation occurs. Therefore, the term
with the lowest energy is also the termwith themaximum number of
unpaired electrons, so for our example shown in Fig. 3, Hund’s rule
dictates that the correct configuratio is the middle one, resulting in
a total spin quantum value of 3/2.

Hund’s rule is derived from empirical observations, and there is
no clear understating of why the electrons populate atomic orbitals
in this way. So far, two different physical explanations have been
given in Ref. 18. Both explanations revolve around the energetic bal-
ance of the electrons and their interactions in the atom. The firs
mechanism implies that electrons in different orbitals are further
apart, so that electron–electron repulsion energy is reduced. The sec-
ond mechanism claims that the electrons in singly occupied orbitals

FIG. 3. Three electrons residing on a p orbital and their allowed arrangements
according to Pauli’s exclusion principle.
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are less effectively screened from the nucleus, resulting in a contrac-
tion of the orbitals, which increases the electron–nucleus attraction
energy.19

In this article, we examine the electronic population in atoms
within the framework of information theory3 and we demonstrate
that Hund’s rule (Hund’s firs rule) is a direct consequence of the
second law of information dynamics.1 This requires that, at equilib-
rium in the ground state, electrons occupy the orbitals in such a way
that their information entropy is minimum, or equivalently, the bit
information content per electron is minimum.

A. Numerical calculations
We treat the two possible values of the secondary quantum spin

number ms of the electrons in atoms, ms = −1/2, +1/2, as two possi-
ble events, or as a two-letter message within Shannon’s information
theory framework. The secondary quantum spin number ms is a
very important parameter because it is the only quantity that dis-
tinguishes two electrons residing in the same orbital. Since their n,
ℓ, and mℓ values are the same, their ms must be different to fulfil
Pauli’s exclusion principle.

We will allocate to the two possible projections of the ms the
spin up ↑ and spin down ↓ states. In this context, the set of n = 2
independent and distinctive information states is X = {↑, ↓}, with a
discrete probability distribution P = {p↑, p↓}.

Hence, for any N electrons, we have N↑ and N↓ electrons, so
that N = N↑ + N↓, and relation (1) gives the Shannon information
entropy per electron spin, or the bit information content stored per
electron spin, while relation (3) gives the total information entropy
per N electrons. Hence, relation (1) becomes

H(X) = p↑ ⋅ log2
1
p↑
+ p↓ ⋅ log2

1
p↓

, (9)

where p↑ = N↑/N and p↓ = N↓/N, which allows re-writing Eq. (9) as

H(X) =
N↑
N
⋅ log2

N
N↑
+

N↓
N
⋅ log2

N
N↓

. (10)

Since the electronic populations are stable, then N is constant, and
the minimum in the entropy of the information bearing states, SInfo
corresponds to a minimum in Shannon’s information entropy. We
now consider the s, p, d, and f orbitals, and we analyze in detail
the Shannon’s information entropy of each possible distinctive elec-
tronic configuration for any possible occupancy number of these
orbitals. The maximum allowed value for the information entropy
H(X) = IE is 1 bit, and the minimum possible value is 0 bits. We
will demonstrate that for each orbital, the configuratio that has the
lowest Shannon information entropy, i.e., the lowest bit informa-
tion content, corresponds to the highest total spin quantum value.
Hence, Hund’s rule is, in fact, a consequence of the second law of
infodynamics.

B. s-orbital
The s orbital can accommodate a maximum of N = 2 electrons.

Figure 4 shows the possible electronic configuration of an s orbital.
When N = 1, or N = 2, the IE = 1 bit in both cases, while the total
spin quantum value is 0.5 and 0, respectively. Since there are no
other possible configurations the case for s-orbital is rather trivial.

FIG. 4. Representation of all possible distinctive electronic populations of an s
orbital.

Figure 5(a) shows a plot of the IE values vs the total spin quantum
value, S for the s orbital.

C. p-orbital
The p orbital can accommodate a maximum of N = 6 electrons.

Figure 6 shows the electronic populations on the p orbital for all pos-
sible N values. We should mention that only distinct configuration
have been represented in the diagram. Any electronic arrangement
that results in the same ratio of spin-up and spin-down electrons is
not represented, as it would duplicate the results.

Similarly, configuration obtained by inverting all spins, i.e.,
mirror images, result in the same IE values and are not considered
to avoid duplications.

Figure 5(b) shows the graph of the IE values vs the total
spin quantum value for all possible distinct occupancy cases of the
p orbital. As shown in Fig. 6, each time multiple arrangements are
possible, as is the case for N = 2, 3, and 4, respectively, the maximum
spin quantum value corresponds to theminimum IE value estimated
using Eq. (10). For N = 2 and 3, the minimum IE is 0 in each case,
while for N = 4, the minimum IE value is 0.811. To emphasize this,
we highlighted, in Fig. 6, the correct configuration that are required
by Hund’s rule.

D. d-orbital
We now examine the case of the d orbital, which can accom-

modate a maximum of N = 10 electrons. Figure 7 shows the distinct
electronic populations allowed on the d orbital for all possible
N values.

For N = 1, 9, and 10, only a single distinct arrangement is possi-
ble, while for all the otherN values, multiple electronic arrangements
are allowed within Pauli’s exclusion principle.

Figure 5(c) shows the IE values vs the total spin quantum value
for all possible distinct occupancy cases of the d orbital. The data
indicates that the maximum spin quantum value corresponds to the
minimum IE value estimated using Eq. (10). For each N value, we
highlighted, in Fig. 7, the correct configuration that are required
by Hund’s rule. These all correspond exactly to the lowest IE value,
reinforcing the validity of the second law of infodynamics. The min-
imum IE value of 0 is achieved for N = 2, 3, 4, and 5. The minimum
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FIG. 5. Calculated IE values for (a) s orbital, (b) p orbital, (c) d orbital, and (d) f orbital. Data represent each possible distinct electronic configuratio vs the total spin quantum
value, S. The data show categorically that IE is minimum when S is maximum is each case.

FIG. 6. Representation of all possible distinctive electronic populations of a p orbital. Configuration highlighted in green are the correct arrangements when multiple states
are possible for N = 2, 3, and 4, respectively.
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FIG. 7. Representation of all possible distinctive electronic populations of a d orbital. Configuration highlighted in green are the correct arrangements when multiple states
are possible for N = 2–8.

IE values are IE = 0.65 for N = 6, IE = 0.863 for N = 7, and IE = 0.954
for N = 8, respectively.

E. f-orbital
Finally, we examine the f-orbital, which can accommodate a

maximum of N = 14 electrons. Therefore, we have 14 possible
groups, with N = 1, 13, and 14 having only a single distinct electronic
arrangement possible, while for all the other N values, multiple
electronic arrangements are allowed by Pauli’s exclusion principle.
Figure 8 shows the distinct electronic populations allowed on the
f orbital for all possible N values.

Again, we highlighted the correct arrangements as dictated by
Hund’s rule, and we calculated the IE values for all possible configu
rations. The minimum IE value of 0 is achieved for N = 2, 3, 4, 5, 6,
and 7. For the remaining groups with multiple electronic configura
tions, the minimum IE values are IE = 0.544 for N = 8, IE = 0.764 for
N = 9, IE = 0.881 for N = 10, IE = 0.946 for N = 11, and IE = 0.98 for
N = 12, respectively. The data show categorically that, in all cases,
the minimum IE value corresponds to the maximum spin quantum
value, S, so the second law of infodynamics appears to be the real
driving force behind Hund’s rule.

V. SECOND LAW OF INFODYNAMICS IN COSMOLOGY
The universe can only be either finite/clos or infinite/open

The current consensus is that we live in an infinit universe that is
in continuous expansion. Regardless of whether the universe is finit
or infinite the thermodynamic laws are equally applicable. The firs
law of thermodynamics states that energy can neither be created nor
destroyed; it is conserved. The energy in the universe can only be
converted from one form to another, but overall, it remains constant.
Using Clausius’ sign convention, the mathematical differential form
of the firs law of thermodynamics is

dQ = dU + dW, (11)

where Q is the net heat energy supplied to the universe, W captures
the work done by the universe in all possible forms, and U represents
the total internal energy of matter and radiation in the universe.

However, the universe does not exchange heat with anything,
so if the universe is expanding adiabatically, then the firs law
becomes

0 = dQ = dU + dW. (12)

We now recall the relation that links heat to entropy, dQ = T ⋅ dS,
where S is the total entropy of the universe and T is the temperature.
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FIG. 8. Representation of all possible distinctive electronic populations of an f orbital. Configuration highlighted in green are the correct arrangements according to Hund’s
rule when multiple states are possible for N = 2–12.
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FIG. 9. Diagram of a physical system under continuous expansion in time, resulting
in entropy increasing.

Since T has a non-zero value as dictated by the third law of thermo-
dynamics, and the average temperature of the observable universe
could, in fact, be considered to be 2.7 K, we deduce that dS = 0. This
implies that the total entropy of the universe must be constant. This
constant entropy does not violate the second law of thermodynam-
ics, which allows the entropy to be constant over time or to increase.
However, in an expanding universe, the entropy will always increase
because more possible microstates are being created via the expan-
sion of the space itself. Figure 9 shows a diagram of a physical system
containing matter when the size of the system is in continuous
expansion, while its physical content remains unchanged.

Just as in our expanding universe, the space expansion in the
schematic physical system shown in Fig. 9 facilitates the emergence
of more microstates, and the total entropy increases rapidly. If the
universe does not expand, at some point, the entropy will reach its
maximum and the universe will achieve equilibrium.

This process allows for the physical entropy of the universe
in the past to have been at its maximum value when the universe
would have been much smaller than today and at near equilib-
rium. The evidence for this is the cosmic microwave background
(CMB) radiation,20 which is almost isotropic, having a tempera-
ture of ∼2.7 K in all directions,21 and a very low-level temperature
anisotropy (ΔT/T ∼ 10−5).22,23 The time origin of this low level of
temperature anisotropy can be traced back to ∼370 000 years after
the big bang24 when the universe was close to chemical and ther-
mal equilibrium and the density inhomogeneities were comparable
to the temperature anisotropies (Δρ/ρ ∼ ΔT/T ∼ 10−5).

However, in order to comply with the firs law of thermody-
namics and the adiabatic expansion, we just showed that the total
entropy of the universe must be constant. If this is the case, how
can the physical entropy of our expanding universe increase contin-
uously? This is called the “Entropic Paradox” and to solve it, there
are only three possibilities:

(a) The laws of thermodynamics are not valid;
(b) The universe is not expanding;
(c) The entropy budget of the universe contains an unaccounted

entropy term.

The readers would agree that possibilities (a) and (b) are out
of the question as these are supported by undisputed empirical evi-
dence. Therefore, we are left with the search for another entropy

term responsible for the initial high entropy of the universe. This
entropy term must also balance the total entropy budget of the uni-
verse in order to ensure that the overall entropy remains constant
over time, despite the evident increase in physical entropy that we
can observe in the expanding universe.

In this paper, we propose that the missing entropy term is the
entropy associated with the information content of the universe.

Let us write the total entropy of the universe, S, as the sum of
the physical entropy and the information entropy,

S = SPhys + SInfo. (13)

By differentiating (13), we get

dS = dSPhys + dSInfo. (14)

Imposing the dS = 0 condition, and taking a time derivative, we
obtain

dSPhys

dt
+

dSInfo

dt
= 0. (15)

Since dSPhys/dt ≥ 0, i.e., physical entropy always increases over time
according to the second law of thermodynamics and according to
empirical observations, then the increase in the physical entropy
must be balanced by the decrease in the information entropy over
the same time interval, so − dSPhys

dt =
dSInfo
dt , which means

dSInfo

dt
≤ 0. (16)

The relation (16) is identical to relation (4), and it is exactly
the second law of infodynamics, requiring that the entropy of the
information states must decrease over time. Hence, the second law
of infodynamics appears to be universally applicable and is, in fact,
a cosmological necessity. It is important to realize that in order for
the overall entropy of the universe to remain constant, the absolute
values of physical entropy and information entropy do not have to be
equal. Only their absolute change over time must be equal, in order
to ensure a constant overall entropy of the universe.

VI. SECOND LAW OF INFODYNAMICS
AND SYMMETRIES

Symmetry is a mathematical concept in which a certain prop-
erty, for instance, the geometrical shape of an object, is preserved
under certain transformations applied to the object. Such transfor-
mations include translations, rotations, reflections and more com-
plex operations combining these. In each case, the object remains
invariant upon transformation. In the context of Euclidian geome-
try, these transformations are called symmetry operations. A sym-
metry operation is the movement of an object into an equivalent
and indistinguishable orientation that is carried around a symme-
try element. A symmetry element is a point, line, or plane about
which a symmetry operation is carried out. The classical group
theory is the mathematical tool for the study of symmetry, describ-
ing the structure of transformations that map objects to themselves
exactly.
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However, symmetry is not merely a mathematical concept.
It transcends disciplines, connecting mathematics, chemistry, biol-
ogy, and physics, and appears to be a fundamental property of the
universe.

This is evidenced by everything around us, from the elegant
symmetrical patterns of snowflake to the fundamental symmetries
governing subatomic particles. Symmetry occurs at all scales, playing
a pivotal role in the structure and behavior of matter in the universe.
Figure 10 shows a few examples of amazing symmetries manifesting
in nature.

This abundance of symmetry in the natural world begs the
question: Why does symmetry dominate all systems in the universe
instead of asymmetry? After all, the entropic evolution of the uni-
verse tends to a higher entropy state, yet everything in nature appears
to prefer high symmetry and a high degree of order.

Here, we explore the mathematical underpinnings of symme-
try and its crucial significanc in the context of the second law of
infodynamics. We demonstrate a unique observation that a high
symmetry corresponds to a low information entropy state, which is
exactly what the second law of infodynamics requires. Hence, this
remarkable observation appears to explain why symmetry domi-
nates in the universe: it is due to the second law of information
dynamics.

Before we proceed to our proof, it is useful to establish a way of
measuring the symmetry of an object quantitatively. In other words,
how much symmetry does a shape have? One accepted method
of measuring the symmetry of an object is by counting the num-
ber of symmetry operations that one can carry out on the object.
The more symmetry operations a shape has, the more symmetric
it is.

Since the symmetry operations are carried out around the sym-
metry elements, we propose to quantify the symmetry of a shape
by counting its number of symmetry elements instead of counting
the number of symmetry operations. For example, a perfect square
has eight symmetry operations (four rotations and four reflections

FIG. 11. Regular triangle with no symmetry elements.

and fiv symmetry elements (one axis of rotation and four axes of
reflection)

Our main objective is to describe the relationship between the
symmetry of an object, determined by the number of its symmetry
elements (SE) and its information entropy (IE).

In order to do this, let us consider a range of simple Euclid-
ian 2D geometric shapes. We start with an ordinary triangle, define
by three sides of length a, b, and c and three corresponding angles
α, β, and γ, respectively (see Fig. 11). These parameters are a
unique representation of the shape, as there is no other possible
way of forming a triangle that looks different using this set of
parameters.

Within Shannon’s information theory framework, we defin
the set of six distinct characters, n = N = 6, X = {a, b, c, α, β, γ}, and
a probability distribution P = {pa, pb, pc, pα, pβ, pγ} on X. The prob-
abilities of the set are P = { 1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6}. The average information

per character, or the number of bits of information per character

for this set, is given by Eq. (1), H(X) = IE = −
6
∑
j=1

p j ⋅ log2 p j = log2

6 = 2.585.
This ordinary triangle has no symmetry, and accordingly, it has

zero symmetry elements, so SE = 0.
We now examine an isosceles triangle, as shown in Fig. 12.

This shape has one symmetry element (a reflectio axis), so
SE = 1 and it is fully define by the set of four distinct

FIG. 10. A few examples of the abundance of symmetry in the universe.
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FIG. 12. Symmetry elements of an isosceles triangle.

characters n = 4, X = {a, b, α, β}, and a probability distribution
P = {pa, pb, pα, pβ} = {

2
6 ,

1
6 ,

2
6 ,

1
6}. In this case, the IE is

IE = −
4
∑
j=1

pj ⋅ log2 pj

= −(
2
6
log2

2
6
+

1
6
log2

1
6
+

2
6
log2

2
6
+

1
6
log2

1
6
) = 1.918.

Finally, we are examining the triangle shape that has the highest
symmetry, the equilateral triangle (see Fig. 13). The equilateral tri-
angle has four symmetry elements, SE = 4 (three reflectio axes
and one rotation axis), and it is fully define by the set of two dis-
tinct characters n = 2, X = {a, α}, and a probability distribution
P = {pa, pα} = {

3
6 ,

3
6}. In this case, the IE is

IE = −
2
∑
j=1

pj ⋅ log2 pj = −(
3
6
log2

3
6
+

3
6
log2

3
6
) = 1.

Examining the relationship between the information entropy (IE)
and the symmetry elements (SE) of these triangles, we observe that
the symmetry scales inversely proportionally with the information
entropy.

FIG. 13. Symmetry elements of an equilateral triangle.

FIG. 14. Information entropy vs number of symmetry elements of triangular
shapes.

High symmetry = low information entropy This behavior is
clearly emphasized in Fig. 14, showing the IE vs SE for all possible
triangle shapes.

Although this was observed in the case of a single 2D geometric
shape, we postulate that this is a universal behavior of symmetries.
In order to convince the reader, let us examine the case of quadri-
laterals. There are seven possible geometries of a quadrilateral figur
in terms of its possible symmetries. Table I gives all seven possible
geometries and their SE values. For each geometry, we computed
the IE value. The data are also summarized in Fig. 15.

Again, the shape with the highest symmetry has the lowest
information content.

The same analysis can be applied to any geometric figure
including 3D geometries, producing the same results. In each case,
the symmetry scales inversely with the information content.

This remarkable result demonstrates that the symmetries man-
ifesting everywhere in nature, and in the entire universe, are a
consequence of the second law of information dynamics, which
requires the minimization of the information entropy in any system
or process in the universe.
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TABLE I. Summarized results of the analysis performed on quadrilaterals.

IE

Shape SE Set X of distinct characters Probabilities IE = −
n
∑
j=1

p j ⋅ log2 p j

0 X = {a, b, c,d, α, β, γ, θ} P = { 1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8} 3

1 X = {a, b, c, α, β} P = { 2
8 ,

1
8 ,

1
8 ,

2
8 ,

2
8} 2.25

1 X = {a, b, α, β, γ} P = { 2
8 ,

2
8 ,

2
8 ,

1
8 ,

1
8} 2.25

1 X = {a, b, α, β} P = { 3
8 ,

1
8 ,

2
8 ,

2
8} 1.905

3 X = {a, b, α} P = { 2
8 ,

2
8 ,

4
8} 1.5

3 X = {a, α, β} P = { 4
8 ,

2
8 ,

2
8} 1.5

5 X = {a, α} P = { 4
8 ,

4
8} 1
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FIG. 15. Information entropy vs number of SE of quadrilaterals.

VII. CONCLUSIONS
In this study, we revisited the second law of infodynamics, firs

introduced in 2022.1 The second law of infodynamics states that the
information entropy of systems containing information states must
remain constant or decrease over time, reaching a certain minimum
value at equilibrium. This is very interesting because it is in total
opposition to the second law of thermodynamics, which describes
the time evolution of the physical entropy that must increase up to a
maximum value at equilibrium.

We showed that the second law of infodynamics is universally
applicable to any system containing information states, including
biological systems and digital data. Remarkably, this indicates that
the evolution of biological life tends in such a way that genetic
mutations are not just random events as per the current Darwinian
consensus, but instead undergo genetic mutations according to the
second law of infodynamics, minimizing their information entropy.
This discovery has massive implications for genetic research, evo-
lutionary biology, genetic therapies, pharmacology, virology, and
pandemic monitoring, to name a few.

Here, we also expanded the applicability of the second law of
infodynamics to explain phenomenological observations in atomic
physics. In particular, we demonstrated that the second law of info-
dynamics explains the rule followed by the electrons to populate
the atomic orbitals in multi-electron atoms, known as the Hund’s
rule. Electrons arrange themselves on orbitals, at equilibrium in the
ground state, in such a way that their information entropy is always
minimal.

Most interesting is the fact that the second law of infodynam-
ics appears to be a cosmological necessity. Here, we re-derived this
new physics law using thermodynamic considerations applied to an
adiabatically expanding universe.

Finally, one of the great mysteries of nature is: Why does sym-
metry dominate in the universe? has also been explained using the
second law of infodynamics. Using simple geometric shapes, we
demonstrated that high symmetry always corresponds to the lowest
information entropy state, or lowest information content, explaining
why everything in nature tends to symmetry instead of asymmetry.

The key question is now: “What can we learn from the second
law of infodynamics and what is its meaning?”

The second law of infodynamics essentially minimizes the
information content associated with any event or process in the
universe. The minimization of the information really means an opti-
misation of the information content, or the most effective data
compression, as described in Shannon’s information theory. This
behavior is fully reminiscent of the rules deployed in program-
ming languages and computer coding. Since the second law of
infodynamics appears to be manifesting universally and is, in fact,
a cosmological necessity, we could conclude that this points to
the fact that the entire universe appears to be a simulated con-
struct. A super complex universe like ours, if it were a simula-
tion, would require a built-in data optimization and compression
mechanism in order to reduce the computational power and the
data storage requirements. This is exactly what we are observ-
ing via empirical evidence all around us, including digital data,
biological systems, atomistic systems, symmetries, and the entire
universe.

Another important aspect of the second law of infodynamics
is the fact that it appears to validate the mass-energy-information
equivalence principle formulated in 2019.4 According to this princi-
ple, the information itself is not just a mathematical construct or just
physical, as postulated by Landauer25 and experimentally demon-
strated recently,26–29 but it has a small mass and can be regarded
as the fift form of matter.4 This principle has not been confirme
experimentally yet, and it has attracted a fair share of skepticism.
Whether information is physical or not is irrelevant to this study
because the second law of infodynamics is applicable regardless of
whether information has mass or not. However, if information is
physical (equivalent to mass and energy), then the second law of
thermodynamics requires systems to evolve in such a way that the
energy is minimized at equilibrium. Hence, a reduction in the infor-
mation content, would translate into a reduction of mass-energy
according to the mass-energy-information equivalence principle.
Therefore, the second law of infodynamics is not just a cosmological
necessity, but since it is required to fulfil the second law of ther-
modynamics, we can conclude that this new physics law proves that
information is indeed physical. The scientifi evidence supporting
the simulated universe theory is also discussed in greater detail in a
recently published book. 30
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