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DNA STORAGE

DNA Fountain enables a robust and
efficient storage architecture
Yaniv Erlich1,2,3* and Dina Zielinski1

DNA is an attractive medium to store digital information. Here we report a storage strategy,
called DNA Fountain, that is highly robust and approaches the information capacity per
nucleotide. Using our approach, we stored a full computer operating system, movie, and other
files with a total of 2.14 × 106 bytes in DNA oligonucleotides and perfectly retrieved the
information from a sequencing coverage equivalent to a single tile of Illumina sequencing.
We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample
and were able to perfectly decode the data. Finally, we explored the limit of our architecture
in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes
per gram of DNA, orders of magnitude higher than previous reports.

H
umanity is currently producing data at
exponential rates, creating a demand for
better storage devices. DNA is an excellent
medium for data storage, owing to its dem-
onstrated information density of petabytes

of data per gram, high durability, and evolution-
arily optimized machinery to faithfully replicate
this information (1, 2). Recently, a series of proof-
of-principle experiments has demonstrated the
value of DNA as a storage medium (3–9).
To better understand its potential, we explored

the Shannon information capacity (10, 11) of DNA
storage (12). This measure sets a tight upper
bound on the amount of information that can
be reliably stored in each nucleotide. In an ideal
world, the information capacity of each nucleo-
tide could reach 2 bits, as there are four possible

options. However, DNA encoding faces several
practical limitations. First, not all DNA sequences
are created equal (13, 14). Biochemical constraints
dictate that DNA sequences with high GC con-
tent or long homopolymer runs (e.g., AAAAAA…)
are undesirable, as they are difficult to synthe-
size and prone to sequencing errors. Second,
oligonucleotide (hereafter “oligo”) synthesis, poly-
merase chain reaction (PCR) amplification, and
decay of DNA during storage can induce uneven
representation of the oligos (7, 15). This might
result in dropout of a small fraction of oligos that
will not be available for decoding. In addition to
biochemical constraints, oligos are sequenced
in a pool and necessitate indexing to infer their
order, which further limits the number of avail-
able nucleotides for encoding information. Quan-

titative analysis shows that the biochemical
constraints reduce the coding potential of each
nucleotide to 1.98 bits. After combining the ex-
pected dropout rates and barcoding demand,
the overall Shannon information capacity of a
DNA storage device is ~1.83 bits per nucleotide
for a range of practical architectures (12) (figs. S1
to S5 and tables S1 to S3).
Previous studies of DNA storage realized about

half of the Shannon information capacity of DNA
molecules. In addition, most of the previous
studies reported challenges in perfect informa-
tion retrieval (Table 1). For example, two previ-
ous studies attempted to address oligo dropout
by dividing the original file into overlapping seg-
ments so that each input bit is represented by
multiple oligos (4, 6). However, this repetitive
coding procedure generates a loss of information
content and is poorly scalable (fig. S6). In both
cases, these studies reported small gaps in the
retrieved information (4, 6). Other studies ex-
plored the use of Reed-Solomon (RS) code on
small blocks of the input data to recover drop-
outs (5, 7). Although these studies were able to
perfectly retrieve the data, they were still far
from realizing the capacity. Moreover, testing
this strategy on a large file size highlighted dif-
ficulties in decoding the data due to local cor-
relations and large variations in the dropout
rates within each protected block (7), which is a
known issue of blocked RS codes (16, 17). Only
after employing a complex multistep procedure
and high sequencing coverage was the study able
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Table 1. Comparison of DNA storage coding schemes and experimen-
tal results. For consistency, the table describes only schemes that were

empirically tested with pooled oligo synthesis and high-throughput sequenc-
ing data. The schemes are presented chronologically on the basis of publica-

tion date. Coding potential is the maximal information content of each

nucleotide before indexing or error correcting. Redundancy denotes the excess

of synthesized oligos to provide robustness to dropouts. Error correction/
detection denotes the presence of error-correction or -detection code to

handle synthesis and sequencing errors (RS, Reed-Solomon codes). Full

recovery indicates whether all information was recovered without any error.
Net information density indicates the input information in bits divided by the

number of synthesized DNA nucleotides (excluding adapter annealing sites).

Realized capacity is the ratio between the net information density and the

Shannon capacity of the channel. Physical density is the actual ratio of the
number of bytes encoded and the minimal weight of the DNA library used to

retrieve the information. This information was not available for studies by

Bornholt et al. (6) and Blawat et al. (7), as indicated by the dashes. See (12)

for more information.

Parameter Church et al. (3) Goldman et al. (4) Grass et al. (5) Bornholt et al. (6) Blawat et al. (7) This work

Input data (Mbytes) 0.65 0.75 0.08 0.15 22 2.15
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Coding potential (bits/nt) 1 1.58 1.78 1.58 1.6 1.98
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Redundancy 1 4 1 1.5 1.13 1.07
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Robustness to dropouts No Repetition RS Repetition RS Fountain
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Error correction/detection No Yes Yes No Yes Yes
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Full recovery No No Yes No Yes Yes
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Net information density (bits/nt) 0.83 0.33 1.14 0.88 0.92 1.57
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Realized capacity 45% 18% 62% 48% 50% 86%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Number of oligos 54,898 153,335 4,991 151,000 1,000,000 72,000
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Physical density (Pbytes/g) 1.28 2.25 25 – – 214
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

http://science.sciencemag.org/
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to rescue a sufficient number of oligos. Taken
together, these results inspired us to seek a cod-
ing strategy that can better utilize the information
capacity of DNA storage devices while showing
higher data-retrieval reliability.
We devised a strategy for DNA storage, called

DNA Fountain, that approaches the Shannon ca-
pacity while providing robustness against data
corruption. Our strategy harnesses fountain codes
(18, 19), which have been developed for reliable
and effective unicasting of information over chan-
nels that are subject to dropouts, such as mobile
TV (20). In our design, we carefully adapted the
power of fountain codes to overcome both oligo
dropouts and the biochemical constraints of DNA
storage. Our encoder works in three steps (Fig.
1) (12): First, it preprocesses a binary file into a
series of nonoverlapping segments of a certain
length. Next, it iterates over two computational
steps: Luby transform and screening. The Luby
transform sets the basis for fountain codes. Basi-
cally, it packages data into any desired number
of short messages, called droplets, by selecting a
random subset of segments from the file using a
special distribution (fig. S7) and adding them
bitwise together under a binary field. The drop-
let contains two pieces of information: a data
payload part that holds the result of the addi-
tion procedure and a short, fixed-length seed.
This seed corresponds to the state of the random-
number generator of the transform during the
droplet creation and allows the decoder algo-

rithm to infer the identities of the segments in
the droplet. Theoretically, it is possible to re-
verse the Luby transform using a highly efficient
algorithm by collecting any subset of droplets
as long as the accumulated size of droplets is
slightly bigger than the size of the original file.
For DNA Fountain, our algorithm applies one
round of the transform in each iteration to create
a single droplet. Next, the algorithm moves to
the droplet screening stage. This stage is not
part of the original fountain code design and
allows us to completely realize the coding poten-
tial of each nucleotide. In screening, the algorithm
translates the binary droplet to a DNA sequence
by converting {00,01,10,11} to {A,C,G,T}, respec-
tively. Then, it screens the sequence for the
desired biochemical properties of GC content
and homopolymer runs. If the sequence passes
the screen, it is considered valid and added to
the oligo design file; otherwise, the algorithm
simply trashes the droplet. Since the Luby trans-
form can create any desired number of droplets,
we keep iterating over the droplet creation and
screening steps until a sufficient number of valid
oligos are generated. In practice, we recommend
5 to 10% more oligos than input segments (12).
Searching for valid oligos scales well with the
size of the input file and is economical for var-
ious oligo lengths within and beyond current
synthesis limits (12) (table S4).
We used DNA Fountain to encode a single

compressed file of 2,146,816 bytes in a DNA oligo

pool. The input data were in the form of a tarball
that packaged several files, including a complete
graphical operating system of 1.4Mbytes, amovie,
and other files (12) (Fig. 2A and fig. S8). We split
the input tarball into 67,088 segments of 32 bytes
and iterated over the steps of DNA Fountain to
create valid oligos. Each droplet was 38 bytes
(304 bits): 4 bytes of the random-number gen-
erator seed, 32 bytes for the data payload, and
2 bytes for an RS error-correcting code, to reject
erroneous oligos in low-coverage conditions.With
this seed length, our strategy supports encoding
files of up to 500 Mbytes (12). The DNA oligos
had a length of 304/2 = 152 nucleotides (nt)
and were screened for homopolymer runs of
≤3 nt andGC content of 45 to 55%.We instructed
DNA Fountain to generate 72,000 oligos, yielding
a redundancy of 72,000/67,088 – 1 = 7%. We se-
lected this number of oligos due to the price
structure offered by the manufacturer, allowing
us to maximize the number of oligos per dollar.
Finally, we added upstream and downstream
annealing sites for Illumina adapters, making
our final oligos 200 nt long (Fig. 2B and fig. S9).
Encoding took 2.5 min on a single central pro-
cessing unit (CPU) of a standard laptop. We
achieved an information density of 1.57 bits/nt,
only 14% from the Shannon capacity of DNA
storage and 60% more than previous studies
with a similar scale of data (Table 1).
Sequencing and decoding the oligo pool fully

recovered the entire input file with zero errors
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Fig. 1. DNA Fountain encoding. (Left) Three main algorithmic steps. (Right) Example with a small file of 32 bits. For simplicity, we partitioned the file into
eight segments of 4 bits each. The seeds are represented as 2-bit numbers and are presented for display purposes only. See (12) for the full details of each
algorithmic step.
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(Fig. 2C). To retrieve the information, we PCR-
amplified the oligo pool and sequenced the DNA
library on one Illumina MiSeq flow cell with 150
paired-end cycles, which yielded 32 million reads.
We employed a preprocessing strategy that pri-
oritizes reads that are more likely to represent
high-quality oligos (12). Because not all oligos are
required for the decoding due to redundancy, this
procedure reduces the exposure to erroneous
oligos. The decoder scans the reads, recovers the
binary droplets, rejects droplets with errors based
on the RS code, and employs a message-passing
algorithm to reverse the Luby transform and
obtain the original data (12).
In practice, decoding took ~9 min with a Py-

thon script on a single CPU of a standard laptop
(movie S1). The decoder recovered the informa-
tion with 100% accuracy after observing only
69,870 oligos out of the 72,000 in our library
(fig. S10). To further test the robustness of our
strategy, we down-sampled the raw Illumina data

to 750,000 reads, equivalent to one tile of an
Illumina MiSeq flow cell. This procedure re-
sulted in 1.3% oligo dropout from the library.
Despite these limitations, the decoder was
able to perfectly recover the original 2.1 Mbytes
in 20 of 20 random down-sampling experi-
ments. These results indicate that beyond its
high information density, DNA Fountain also
reduces the amount of sequencing required for
data retrieval, which is beneficial when storing
large-scale information.
DNA Fountain can also perfectly recover the

file after creating a deep copy of the sample. One
of the caveats of DNA storage is that each re-
trieval of information consumes an aliquot of the
material. Copying the oligo library with PCR is
possible, but this procedure introduces noise and
induces oligo dropout. To further test the robust-
ness of our strategy, we created a deep copy of
the file by propagating the sample through nine
serial PCR amplifications (Fig. 2D). The first PCR

reaction used 10 ng of material out of the 3-mg
master pool. Each subsequent PCR reaction con-
sumed 1 ml of the previous PCR reaction and
employed 10 cycles in each 25-ml reaction. We se-
quenced the final library using one run on the
Illumina MiSeq.
Overall, this recursive PCR reflects one full

arm of an exponential process that theoretically
could generate 300 × 259 × 2 = 2.28 quadrillion
copies of the file by repeating the same pro-
cedure with each aliquot (fig. S11). As expected,
the quality of the deep copy was substantially
worse than the initial experiment with the mas-
ter pool. The average coverage per oligo dropped
from an average of 7.8 perfect calls for each oligo
per million reads (pcpm) to 4.5 pcpm in the deep
copy. In addition, the deep copy showed much
higher skewed representation with a negative
binomial overdispersion parameter (1/size) of
0.76 compared to 0.15 in the master pool. Despite
the lower quality, the DNA Fountain decoder
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Fig. 2. Experimental setting and results for storing data on DNA.
(A) Input files for encoding, size, and type. The total amount of data was
2.14Mbytesaftercompression. (B)Structureof theoligos.Black labels, length
in bytes; red, length in nucleotides; RS, Reed-Solomon error-correcting code.
(C) Experimental results of the master pool. (D) Experimental procedures
of deep copying of the oligo pool. (C and D) Histograms display the fre-
quency of perfect calls per million sequenced reads (pcpm). Red, mean;
blue, negative binomial fit to the pcpm. (E) Serial dilution experiment.The
weight corresponds to the input DNA library that underwent PCR and
sequencing. Green, correctly decoded; red, decoding failure.
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was able to fully recover the file without a
single error with the full sequencing data. After
down-sampling the sequencing data to five mil-
lion reads, resulting in an approximate dropout
rate of 1.0%, we were able to perfectly recover
the file in 10 of 10 trials. These results suggest
that with DNA Fountain, DNA storage can be
copied virtually an unlimited number of times
while preserving the data integrity of the sample.
Next, we explored the maximal achievable

physical density using DNA Fountain. The pio-
neering study by Church et al. predicted that
DNA storage could theoretically achieve an
information density of 680 Pbytes (P: peta-;
1015) per gram of DNA, assuming the storage of
100 molecules per oligo sequence (3). However,
previous DNA storage experiments have never
tested the maximal density of their storage
scheme. To find the maximal physical density,
we sequentially diluted our library by seven orders
of magnitude from 10 ng to 10 fg of DNA (Fig.
2E). Under a perfect synthesis process (no syn-
thesis errors and/or fragmented DNA molecules),
the first dilution (10 ng) corresponds to ~106

copies per oligo and a density of ~200 Tbytes/g,
whereas the last dilution corresponds to ~1 copy
per oligo and ~200 Ebytes/g (E: exa; 1018). We
PCR-amplified all libraries using an identical
strategy to keep all conditions uniform and se-
quenced the libraries using two multiplexed
Illumina rapid runs, which yielded a similar
number of reads and quality metrics (12).
We were able to perfectly retrieve the infor-

mation from a physical density of 215 Pbytes/g.
This density is over two orders of magnitude
higher than previous reports with a comparable
number of oligos and is close to the theoretical
prediction by Church et al. At this density, the
input weight of the library was 10 pg and each
oligo was represented by ~1300 molecules, on
average (table S5). We observed a 4% dropout
rate, close to the limit of our decoder. For the
lower input weights, the libraries had substan-
tially more oligo dropouts, ranging from 62%
for the 1-pg condition (~2 Ebytes/g) to 87% for
the 10-fg condition (~200 Ebytes/g). A more ag-
gressive error-correcting capability than DNA
Fountain is unlikely to dramatically improve
the physical density. We tested decoding of the
low-weight libraries (<10 pg) under the unreal-
istic assumption of a decoder that can correct
any number of indels and substitutions as long
as a very short stretch (15 nt) of the read is still
intact (12). Even this aggressive error correction
failed to bring the dropout rates of the 1-pg li-
brary below 30%. Therefore, these results suggest
that the current design approaches the maximal
physical density permitted by the stochastic bot-
tleneck induced by PCR amplification of highly
complex libraries using a small number of DNA
molecules.

To summarize, in this work, we reported an
efficient and robust coding strategy that enables
virtually unlimited data retrieval and high phys-
ical density while approaching the Shannon ca-
pacity of DNA storage closer than any previous
design.We tested our frameworkwith a relatively
large file compared with those used in previous
studies andwere able to perfectly recover the data
under various tests. Implementing our approach
in concert with long-term preservation tech-
niques, such as DNA embedding in silica beads
(5), might require further fine-tuning of the re-
dundancy levels.We expect that such fine-tuning
can benefit from the high flexibility of the DNA
Fountain framework, which allows determina-
tion of virtually any redundancy level without
changing the software or affecting the decoding
time.
Moving forward, practical implementation of

DNA storage will require addressing the high
cost of DNA synthesis, which was $3500/Mbyte
in this study. However, these costs reflect the re-
latively low throughput of manufacturing high-
quality oligos for traditional synthetic biology
applications that are sensitive to errors (21). This
is not the case for DNA storage. As shown in our
experiments, strong coding-theoretic tools can
enable perfect decoding of the data from con-
ditions that are well below the initial quality and
quantity of the oligo manufacturer while still
approaching the information capacity. There-
fore, we envision that the cost issue of DNA
storage could be addressed by two complemen-
tary approaches, the first of which is continuous
improvements to the DNA synthesis chemistry,
which have been estimated to exponentially re-
duce the cost by one to two orders of magnitude
per decade (4). A second complementary ap-
proach to achieve cost reduction could rely on
exploring quick-and-dirty oligo synthesis meth-
ods that consume less machine time and fewer
reagents and, therefore, are more cost-effective.
For example, previous results showed that a
~sixfold reduction in the time for the coupling
reaction (60 to 10 s) in maskless array synthesis
technology results in decreased reaction effi-
ciency, from ~99 to 97.5% per cycle (22). The
lower efficiency would exponentially decrease
the number of valid oligos in the pool to a few
percent (0.975152nt = 0.02). But a robust and high-
ly flexible coding strategy, such as DNA Foun-
tain, might handle these imperfections with
small tweaks to the redundancy levels or the
error-detecting code. Taken together, we hypoth-
esize that a substantial cost reduction could
be achieved by finding the sweet spot that opti-
mally combines the highest chemical throughput
and the highest possible rate (bits per nucleo-
tide) of the coding design. By exploiting these
two complementary strategies for more cost-
effective synthesis, DNA might become an econom-

ically viable solution for long-term, high-latency
storage.
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