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Humans rely more on algorithms 
than social influence as a task 
becomes more difficult
Eric Bogert*, Aaron Schecter & Richard T. Watson

Algorithms have begun to encroach on tasks traditionally reserved for human judgment and are 
increasingly capable of performing well in novel, difficult tasks. At the same time, social influence, 
through social media, online reviews, or personal networks, is one of the most potent forces affecting 
individual decision-making. In three preregistered online experiments, we found that people rely 
more on algorithmic advice relative to social influence as tasks become more difficult. All three 
experiments focused on an intellective task with a correct answer and found that subjects relied more 
on algorithmic advice as difficulty increased. This effect persisted even after controlling for the quality 
of the advice, the numeracy and accuracy of the subjects, and whether subjects were exposed to only 
one source of advice, or both sources. Subjects also tended to more strongly disregard inaccurate 
advice labeled as algorithmic compared to equally inaccurate advice labeled as coming from a crowd of 
peers.

Algorithms have mastered  checkers1,  chess2,3,  poker4, and tasks with fewer boundaries such as information 
 search5. Th s expertise has led humans to rely heavily on algorithms. For example, people rely so heavily on 
Google that they treat it as an external memory source, resulting in them being less able to remember searchable 
 information6. As big data has flourished, people have become so comfortable with algorithms that drivers will 
sleep in their self-driving  cars7, go on dates with algorithmically-recommended  matches8, and allow algorithms 
to run their retirement  accounts9. However, there are some tasks for which humans prefer to take advice from 
other humans, such as in medical  advice10 or predicting how funny a joke will  be11.

Humans often demonstrate greater reliance on advice from algorithms compared to non-algorithmic advice, 
exhibiting algorithmic appreciation12. Relying upon algorithms for analytical tasks is typically advantageous. Even 
simple algorithms, such as weighting all variables equally, can outperform human  prediction13. In a meta-analysis 
of 136 studies, algorithms were 10% more accurate, on average, than non-algorithmic (human)  judgment14. 
Consequently, for analytical tasks, we would expect a rational human to demonstrate algorithmic appreciation.

Of course, much of human behavior is not strictly  rational15. People tend to discount or disregard advice, even 
when it is not logical to do  so16. Often, the source of advice dictates how much it is discounted. When people 
discount advice from other people less than they discount advice from algorithms, particularly after observing 
an algorithm make a mistake, they demonstrate algorithmic aversion—the opposite of algorithmic appreciation. 
There is evidence for both algorithmic  aversion17 and  appreciation12,18,19, and it is task  dependent11. Prior research 
has also shown that people rely on advice more heavily when tasks become more  difficult20. However, this effect 
may not be uniform across sources of advice.

Given these empirical observations, we question whether task difficulty is an important explanatory variable 
in determining whether people demonstrate algorithmic appreciation or aversion. In our studies of reliance on 
algorithmic advice, we consider two critical factors: the source of advice and task difficulty. We conducted three 
preregistered experiments with N = 1500 participants to test the influence of algorithmic advice, compared to 
social influence, on human decision making. Broadly speaking, social influence encapsulates the myriad ways 
that humans change their behavior based on the actions of other people. Prior experiments show that when 
humans are exposed to social influence, the wisdom of the crowd can be  reduced21, and that the structure of 
the social network dictates how social influence affects decision-making22. Based on subject responses across 
multiple tasks and under different manipulation conditions, we fi d that people rely more on algorithmic relative 
to social advice, measured using Weight on Advice (WOA)23. Further, we establish that advice acceptance varies 
as tasks increase in objective difficulty and as advice varies in quality.
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Results
In each experiment, subjects were asked how many people were in a photograph and provided advice that was 
purported to be from either “an algorithm trained on 5000 images” or “the average guess of 5000 other people.” 
There was no other introduction to the algorithm or a description of what types of people made the estimates. 
An equal number of subjects were in each group. We used a large group of peers as a reference group because 
large groups often makes guesses that are accurate, on  average21,24,25, and people respond more strongly to advice 
from large numbers of people compared to advice from a single  person26. We chose to design the experiment 
such that the only difference between the two sources of advice was the label, so that we could isolate the effect 
of advice source. Th s is a common method of judging reliance on algorithmic  advice11,12.

We use the Judge Advisor System (JAS) in every experiment. The JAS is an experimental method in which 
subjects answer a question, are provided advice related to that question, and then asked to answer the question 
 again27–30. In experiments using the JAS, a common dependent variable is Weight on Advice (WOA). WOA cal-
culates the degree to which an individual changes their answer towards the advice, and thus is a useful measure 
for describing the extent of algorithmic appreciation or aversion.

All tests described below are two-tailed at the alpha 0.05 signifi ance level and are t tests of coeffici t values 
from a regression. Summary statistics of the data can be found in Table S1.

Experiment 1: Advice as between subjects treatment. In the initial experiment, subjects were asked 
to determine how many people were in a picture and received advice that was labeled as either algorithmic or the 
average of human guesses, and they never received advice from the other source. All advice was the true answer, 
which was determined by the publisher of the  dataset31.

Task validation and randomization check. We fi st assessed whether subjects responded to more dif-
fi ult problems by taking more time, being less confide t, and being less accurate. When comparing within-
person easy to hard questions, individuals are signifi antly more accurate (t = 2.745; P = 0.006; 95% confide ce 
interval (CI) = 0.281 to 1.684), more confide t ( t = 24.291 ; P < 0.001; 95% CI = 0.536 to 0.630) and take less time 
( t = 4.179 ; P < 0.001; 95% CI = 0.041 to 0.113) for easy problems. In all three models we observed that subjects 
relied more on advice in difficult questions. Subjects placed more weight on advice for hard questions in our 
baseline model (B = 0.150; P < 0.001; 95% CI = 0.134 to 0.167), in the model including hypothesized interactions 
(B = 0.132; P < 0.001; 95% CI = 0.108 to 0.155), and in the model including all interactions and control variables 
(B = 0.081; P < 0.001; 95% CI = 0.057 to 0.105). Thus, we conclude that subjects perceived the relative difficulty of 
the questions as designed.

We compared the average initial accuracy, initial confi ence, and initial time taken across treatments using 
a two-sample t-test. For individuals exposed to algorithmic advice, there was not a statistically significant dif-
ference in initial accuracy ( t = −0.767 ; P = 0.443; 95% CI = -1.000 to 0.438). Individuals receiving algorithmic 
advice reported higher initial confide ce ( t = 3.93 ; P < 0.001, 95% CI = 0.149 to 0.050) and spent less time on 
a problem ( t = 2.00 ; P = 0.045; 95% CI = 0.00076 to 0.07293) when we analyzed all questions. However, if we 
compare confidence for only the first question subjects saw (before they received any advice), the difference in 
initial confide ce is not signifi ant (t = −0.20 ; P = 0.403; 95% CI = − 0.203 to 0.082). The difference in time spent 
on a problem is also not significant when looking at only the first question ( t = 0.054 ; P = 0.586; 95% CI = − 0.084 
to 0.149). These results indicate that subjects were effectively equivalent in both conditions, as expected from 
random assignment. In the aggregate, when they received algorithmic advice, subjects became more confi ent 
in their initial guesses and spent less time on a problem in later questions.

Main analyses. To test the preregistered hypotheses, we fit a series of mixed effects linear regressions with 
random slopes for each subject. The regression results are given in Table S2.

Effect sizes and confide ce intervals are shown for the effect of algorithmic advice and difficulty in Fig. 1 
below. All figures were made using  ggplot232, version 3.3.

There is a positive and signifi ant main effect of algorithmic advice on WOA (B = 0.108; P < 0.001; 95% 
CI = 0.058 to 0.158). Similarly, we fi d a positive and signifi ant interaction effect of algorithmic advice and 
difficulty on WOA (B = 0.036; P = 0.029; 95% CI = 0.004 to 0.068)). That is, subjects who receive advice from 
algorithms on easy problems will revise their responses 11% more than subjects receiving advice from the crowd. 
Further, if a problem is difficult, subjects revised their answers by an additional 3.6% more when they receive 
advice from an algorithm, indicating that subjects rely even more on algorithms than they do on the advice of 
a crowd when the task is difficult.

Finally, we checked whether highly accurate subjects were disproportionately relying on algorithmic advice 
and found there was no signifi ant difference (B = − 0.007, P = 0.81, 95% CI = − 0.067 to 0.053). We did not 
hypothesize this in our preregistration for the first experiment, although we investigated this further in experi-
ments two and three.

Experiment 2: Advice source as within-subjects treatment. In the second experiment we again 
show subjects pictures of human crowds and ask them to guess how many people are in the picture. However, 
in experiment two we make advice source a within-subjects condition. We do so because within-subject designs 
better control for any differences among  subjects33. Subjects received five questions for which they received 
advice that was labeled as the average of 5000 human guesses, and five questions for which they received advice 
that was labeled as being from an algorithm trained on 5000 pictures. We also introduced numeracy as a new 
control variable in this  experiment34. The second experiment includes 514 people, after following the same 
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exclusion procedures for the fi st experiment, with the exception of the manipulation check, which we did not 
use because the advice condition was within-subjects.

Results from the second experiment reinforced the results from the first experiment. In the baseline model 
without interactions, subjects relied more strongly on advice when it was labeled as algorithmic (B = 0.069; 
P < 0.001; 95% CI = 0.052 to 0.086). When interactions are analyzed however, the main effect of algorithmic advice 
becomes non-significant (B = 0.027; P = 0.18; 95% CI = -0.013 to 0.0670). We also found that participants relied 
more on algorithmic than crowd advice for difficult questions (B = 0.038; P = 0.037; 95% CI = 0.002 to 0.074). The 
results indicate that there is a net effect of algorithmic appreciation, but that a positive impact is driven entirely 
by a reliance on algorithms for hard problems. The effects and associated standard errors can be seen in Fig. 2.

Finally, more accurate subjects relied on algorithmic advice to the same degree as less accurate subjects 
(B = 0.045; P = 0.15, 95% CI = − 0.017 to 0.107).

Experiment 3: Incorporating low-quality advice. In the third experiment, we relax a signifi ant 
assumption made in the other two experiments, in which the advice provided was always the correct answer, and 
thus was strictly high-quality advice. In the third experiment, we introduce low quality advice, to test whether 
the fi dings relied on providing subjects with high quality advice. Low quality advice was a within-subjects 
condition such that all participants saw the correct answer as advice for half of the questions, and advice that 
was 100% too high for the other half of the questions. The choice of 100% too high was based on pilot that 
tested advice that was too high by 50%, 100%, and 150%. Experiment three reinforced the results from the fi st 
two experiments. We show the effects of quality and advice source below in Fig. 3—these effects are taken from 
Model 3 in Table S4.

Subjects relied more strongly on algorithmic advice (B = 0.059; P < 0.048; 95% CI = 0.0004 to 0.1180), and this 
effect was magnifi d for difficult tasks (B = 0.037; P = 0.028; 95% CI = 0.004 to 0.071). Subjects who were more 
accurate initially did not rely more on algorithmic advice than the advice of a crowd (B = 0.064; P = 0.052). Sub-
jects relied more strongly on good advice than on bad advice (B = 0.11; P < 0.001, 95% CI = 0.084 to 0.144), and 
this effect was greater when the source was an algorithm (B = 0.035; P = 0.043; 95% CI = 0.001 to 0.068). Another 
way to interpret this fi ding is that subjects penalized algorithms more for providing bad advice. When a crowd 
of peers provided low quality advice compared to high quality advice, the baseline from experiments one and 
two, subjects exhibited a WOA of 11% lower, while bad advice from an algorithm reduced WOA by more than 
14%. Lastly, the effect of bad advice was moderated by the difficulty of the question (B = − 0.146; P < 0.001; 95% 
CI = − 0.181 to − 0.111). What this means in light of the research question is more nuanced. Our research ques-
tion is whether people rely more on algorithmic advice than social advice when intellective tasks become harder, 
and whether advice quality moderates that effect. The interaction of advice quality and question difficulty may 

Figure 1.  Source of advice affects subject weight on advice (Experiment 1). Each bar chart depicts results of the 
mixed effects regression model on N = 5083 observations. All models include accuracy as a control. Error bars 
correspond to the standard error of the estimated effect. (a) shows the main effect of advice source on WOA; the 
difference across conditions is signifi ant (p < 0.001). (b) shows the effect of advice source on WOA across levels 
of difficulty; all differences are signifi ant (p < 0.05). Panel A shows the effects using Model 1 from Table S2, 
Panel B shows the effects using Model 2 from Table S2.
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not specifically answer that question, but what it does tell us is that subjects are sensitive to both difficulty and 
quality in tandem, even after accounting for other factors. Further, we find that our primary treatment—advice 
source—has a significant effect on WOA even after including this interaction. This result suggests that source 
has a robust effect across combinations of conditions, lending additional support to one of our main claims.

Additional analyses and robustness checks. It is possible that the fi dings are due to some unobserv-
able individual skill or quality not eliminated by random assignment. Consequently, we conducted an analysis 
of  covariance35 to predict WOA and change in confide ce using initial accuracy, initial confide ce, and initial 
time spent on the task across each level of advice source and difficulty. Thus, we are able to determine the effect 
of advice source and difficulty on WOA after controlling for differences in individuals’ skill (accuracy), perceived 
skill (confide ce), and effort (time).

Figure 2.  Source of advice affects subject weight on advice (Experiment 2). Each bar chart depicts results of the 
mixed effects regression model on N = 4,905 observations. All models include accuracy as a control. Error bars 
correspond to the standard error of the estimated effect. (a) shows the main effect of advice source on WOA; the 
difference across conditions is signifi ant (P < 0.001). (b) shows the effect of advice source on WOA across levels 
of difficulty; all differences are signifi ant (P < 0.05). Panel A is for Model 1 in Table S3, Panel B is for Model 2.

Figure 3.  Source of advice affects subject weight on advice (Experiment 3). Each bar chart depicts results of the 
mixed effects regression model on N = 4365 observations. The exact model used is Model 3 in Table S4. Error 
bars correspond to the standard error of the estimated effect.
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Across all levels of accuracy, initial confide ce, and initial time, subjects consistently exhibited higher WOA 
when receiving advice from an algorithm, when comparing hard questions to hard questions and easy questions 
to easy questions, see Fig. 4 below. This combination of algorithmic advice and problem difficulty creates the 
most significant change in subject estimates, with virtually no overlap of the 95% confidence intervals.

Finally, we conducted robustness checks on the main models (Fig. S2). We removed subsets of the data to 
ensure extreme values were not adversely impacting the fi dings. We excluded the top and bottom 2.5% responses 
for confide ce, time per question, and overall time spent. Across all alternative regressions the fi dings are 
consistent. To check for multicollinearity, we removed control variables stepwise. Removing accuracy, initial 
confidence, and both accuracy and initial confidence did not change the results.

Summary of experimental results
When comparing effects across all three experiments, there is remarkable consistency in the most important 
fi ding, namely, people rely more on algorithmic advice than crowd advice as tasks become more difficult. When 
using the baseline model outlined in the Analytical Approach in the following section, we fi d no signifi ant 
differences in the interaction between algorithmic advice and question difficulty. For all three experiments, the 
effect is between 0.035 and 0.038, indicating that people rely substantially more on algorithmic advice for difficult 
questions than for easy questions, even after accounting for numeracy, accuracy, confidence, advice quality, and 
the number of prior questions answered. A summary of the results in each experiment in Table 1.

Figure 4.  Effects of accuracy, initial confide ce, and initial time. Each plot depicts a linear regression using 
a control variable to explain WOA delineated by advice condition and difficulty (N = 1249). The shaded areas 
depict 95% confide ce intervals. WOA is regressed on (Panel A) initial accuracy, (Panel B) initial confide ce, 
and (Panel C) the number of questions a subject has completed thus far.

Table 1.  Summary of Experimental Findings. *supported in baseline model without interactions and controls. 
**Th s hypothesis was preregistered only for Experiment 3. When using an alternative measure of accuracy 
that allowed for signifi ant outliers, we observed a positive and signifi ant effect of the interaction between 
accuracy and algorithmic advice in both Experiment 1 and 2, so we preregistered a hypothesis about this effect 
for Experiment 3. We then observed that the observed post-hoc effect in Experiment 1 and 2 were due to 
outliers. We thus changed the accuracy measure to be the percentile rank of accuracy on a question, to prevent 
outliers from strongly influencing results.

Claim

Experimental support

1 2 3

Subjects will rely more on algorithmic advice than equally good human advice Yes Partial* Yes

Subjects receiving algorithmic advice will rely more on advice in difficult questions Yes Yes Yes

Highly accurate subjects will rely more on algorithmic advice than inaccurate subjects** No No No

Bad advice from an algorithm more strongly reduces weight on advice than bad advice from a crowd N/A N/A Yes
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Discussion
These three experiments contribute to the burgeoning literature on social influence, the wisdom of the 
 crowds21,22,36, and the role of algorithms in decision making. We provide large-sample experimental evidence 
that for intellective tasks, humans are more accepting of algorithmic advice relative to the consensus estimates 
of a crowd, echoing the results of prior  literature12. Most importantly, we found that subjects exhibit greater 
algorithmic appreciation as intellective tasks became more difficult. With difficult intellective tasks, there is a 
robust and practically significant impact of algorithmic appreciation.

Other fi dings using experiments and the Judge Advisor System have found that the difficulty of a task 
had no effect on algorithmic  appreciation12, or that as tasks became more difficult humans would rely less on 
 algorithms19. Our paper fi ds the opposite, while more strongly and precisely manipulating difficulty, in an envi-
ronment with incentives to do well, while controlling for the accuracy of subjects, whether the advice was within 
or between subjects, the quality of the advice, the numeracy of the subjects, and the confi ence of the subject.

Humans may show a preference toward algorithmic advice depending on how close their initial guess is to 
the advice they  receive19. Those with a history of recent accuracy may strongly discount the advice of others, 
while incorporating the advice of an algorithm, because if people perceive they are good at intellective tasks 
then they likely question why they should accept the advice of the less skilled  crowd19. Thus, we expected that 
highly accurate individuals would demonstrate algorithmic appreciation more than the less accurate; however, 
our experiments did not support this claim.

Humans can discriminate between good and bad advice, and rely less on low-quality advice than they do 
on high-quality  advice37. However, the interaction between advice quality and whether the advice comes from 
an algorithm or group of other humans is largely ignored—humans might respond differently to algorithmic 
mistakes compared to mistakes from a wise crowd when a question is easy or hard. We build on prior research 
that examines algorithmic advice-taking19,38 and advice quality by introducing a reference group, the advice of a 
crowd, with equally good (bad) advice. We tested whether low-quality advice from algorithms creates a stronger 
negative effect than low-quality advice from humans. Our experimental results suggest that when advice quality 
deteriorates (i.e., goes from high to low), algorithms will be penalized to a greater degree than a crowd of advisors.

An important feature of our experiment is the choice of reference group relative to algorithmic advice. Large, 
dispersed human crowds have both historically made accurate  guesses24,25 and people strongly respond to the 
wisdom of the  crowd26. Indeed, we observed that subjects who received advice from the crowd signifi antly 
revised their answers. However, the recommendation of an algorithm still had a stronger effect, across multiple 
specifi ations and experimental conditions. Thus, we argue that simply labeling advice as “algorithmic” or derived 
from machine learning can cause a meaningful shift in human behavior. We used a relatively weak manipula-
tion –simply changing the label of the advice as either algorithmic or the average of a crowd. The consistent, 
statistically robust differences observed by changing only a few words demonstrate that these effects are strong.

The study has some limitations. The subjects recruited might have been more comfortable with technology 
and thus had a higher propensity towards algorithmic advice than the larger public. However, even if the subjects 
demonstrate more algorithmic appreciation than the public overall, we expect that the shift towards algorithmic 
advice for difficult, intellective tasks is a universal effect. Further, as experiment two demonstrates, there is equal 
appreciation for crowd and algorithmic advice when completing easy tasks. It is also possible that this task, which 
is relatively mundane and tedious, may have unique characteristics that cause people to lean disproportionately 
on algorithmic advice as difficulty increases. Specifi ally, for intellective tasks, people may be more likely to rely 
on algorithmic recommendations, whereas for tasks that have signifi ant negotiation or generative components, 
which require subjective judgments, people may feel less comfortable relying on algorithms entirely. However, 
we leave these alternative task types to future research.

Governments and corporations have a strong interest in leveraging AI. Th s can be at the expense of consum-
ers and citizens, who may not know that their data are harvested, stored, and analyzed. People whose data are 
used to calibrate algorithms could be affected by them, positively or negatively, by social or corporate policies 
based on AI. The public seeks interventions that solve important societal problems, such as income inequality, 
medical research, or systemic biases in institutions. Because interventions can be harmful, carefully managed 
research, followed by trials, is necessary to minimize unintended effects. If governments wish to spend citizens’ 
taxes wisely, we need them to take an evidence-based approach to social policy, with AI as a potential research 
methodology. Citizens need to be engaged by freely sharing data that might address private matters, such as 
spending patterns when evaluating the potential outcomes of universal basic income. There is an inherent trade-
off in evidence-based public decision making in that some proportion of the population need to take a health, 
privacy, or other risk to support societal goals. Further research should investigate how improving predictive 
capabilities can be responsibly leveraged across government and private enterprises.

As tasks become more complex and data intensive algorithms will continue to be leveraged for decision 
making. Already, algorithms are used for difficult tasks such as medical  diagnoses39, bail  decisions40, stock 
 picking41, and determining the veracity of content on social  media42. The fi dings reveal a reliance on algorithms 
for difficult tasks and it is important for decision-makers to be vigilant in how they incorporate algorithmic 
advice, particularly because they are likely predisposed towards leaning on it for difficult, thorny problems. 
While algorithms can generally be very accurate, there are instances of algorithms quietly making sexist hiring 
decisions in one of the largest companies in the United  States43, initiating plane  crashes44, or causing racist bail 
 decisions45. Consequently, individuals and organizations leveraging big data to make decisions must be cognizant 
of the potential biases that accompany algorithmic recommendations, particularly for difficult problems. Deci-
sion makers should remember that they are likely to rely more on algorithms for harder questions, which may 
lead to flawed, biased, or inaccurate results. Accordingly, extreme algorithmic appreciation can lead to not only 
complacency, but also ineffective policies, poor business decisions, or propagation of biases.
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Methods
Th s study was approved by the University of Georgia Institutional Review Board, project 00001012. Subjects 
gave written informed consent both before and after participation in the study. All methods were carried out 
in accordance with relevant guidelines and regulations. We conducted three preregistered experiments to test 
the conditions under which humans accept advice. Following a Judge Advisor System  approach30, subjects were 
asked to answer a question, then were exposed to advice, and then asked to submit a second answer. The links 
to our preregistrations for experiment 1, experiment 2, and experiment 3 are: https://osf.io/ym3ug, https://osf.
io/hyz6d, and https://osf.io/vgh9k.

Subjects. For experiment 1, we conducted a power analysis that indicated we needed 235 subjects per group. 
With two groups that is 470 subjects. We used a t-test for evaluating the difference between two independent 
means using the statistical software G  Power46. We conducted a two tailed test, with an effect size of 0.3, an error 
probability of 0.05, power of 0.90, and an allocation ratio of 1. Subjects were recruited from Amazon Mechanical 
Turk (AMT). We started with 611 respondents recruited from AMT. Of those, 16 were duplicate IP addresses, 
27 failed the attention check, 3 did not consent to their data being used, and 21 failed the manipulation check. 
Lastly, we excluded 14 subjects who had no deviation in their weight on advice, i.e. subjects who always either 
took the advice perfectly or who always completely ignored the advice. The analysis is based on the 530 remain-
ing subjects, compared with the preregistered plan of 470 subjects. We oversampled because we did not know 
a priori how many subjects would be excluded. As part of our robustness checks we removed subjects based on 
time spent on a problem and confide ce. The fi dings did not meaningfully change. Each subject was paid USD 
1.50 to complete the experiment, and an additional bonus of USD 0.50 was given to subjects in the top 20% of 
accuracy in their fi al answers. Subjects were aware that a bonus was available for the most accurate respondents, 
but were not told the exact amount of the bonus, following prior usage of bonuses in online  experiments36.

For experiments two and three we followed a similar approach, again recruiting subjects from Amazon 
Mechanical Turk. Subjects who participated in one of the experiments were not allowed to participate in a 
subsequent experiment, because we wanted to obtain as large a cross-section of the population as possible, and 
because we informed subjects of the experimental manipulation after the experiment was completed. We review 
the details of how we excluded subjects for experiments two and three in the Supplementary Information.

Task. All subjects saw ten images with crowds of between 15 (for the easiest question) and 5000 (for the hard-
est question) humans. Easier questions were either the bottom left or bottom right quadrant of a harder image 
and were zoomed in so that each picture was the same size. The pictures were from an annotated dataset with 
professional assessments of the number of people in a  picture47. For each picture, a subject submitted an initial 
guess, along with their confide ce. Subjects were then given advice and asked to resubmit an estimate along with 
their new level of confide ce. Each subject saw ten pictures, five easy and five hard, which vary by the number 
of people pictured. The difficulty manipulation was within-subjects—all respondents saw the same questions. 
The type of advice was between subjects. Each subject was placed in one of two groups—one received advice 
described as “an algorithm trained on 5000 images” and one received advice described as “the average of 5000 
other people”. To control for advice quality, which is known to affect advice  discounting16, the advice was always 
the correct number of people in an image, as reported in the image database. We later manipulate advice quality 
in experiment three.

Subjects were reminded of their prior answer when answering the question the second time. Subjects 
answered how confide t they were in both the initial and subsequent guess. Easier questions are subsets of 
harder questions—for each picture the easier version of the question was always the bottom left or bottom right 
quadrant of the harder picture. We bolded the source of the advice, which was described as either “an algorithm 
trained on 5000 images similar to this one” or “the average guess 5000 other people”. In experiment 1 the source 
of the advice was between subjects, and thus never changed for a subject. In experiment two we relaxed this 
assumption and showed advice as within-subjects. Question order was randomized, so that subjects could see 
easy or hard questions in any order, but subjects always saw the Post question directly after the Initial Question.

Analytical approach. We used multilevel mixed-effects linear regression with random intercepts—fit using 
the lme4 package, version 1.1.23, in the R computing environment 48—to analyze the effects of the advice type 
and task difficulty on weight on advice, time, and confide ce. We control for both the initial confide ce in an 
estimate prior to seeing advice, and for accuracy prior to advice. Our main model is:

Here, yik is one of the dependent variables for participant i and problem k ; β0i is the slope for participant i ; 
AlgoConditioni and Difficultyk are categorical variables indicating the advice condition and problem difficulty 
respectively; and Xik is a vector of control variables. For experiment three we added categorical variables for 
quality of advice and the interaction between quality of advice and algorithmic advice. We also added variables 
for accuracy of an estimate prior to advice being given, and the interaction of accuracy with algorithmic advice. 
We tested for the appropriateness of using a linear mixed effects model by plotting the standardized residuals 
against the standard normal distribution, see Fig. S3 in the Supplemental Information.

Dependent variable. Weight on Advice (WOA): The formula for WOA is 
WOAik =

|final estimateik−initial estimateik|
|recommendationk−initial estimateik |

 . A WOA of one means an individual changed their answer to equal the 
advice given. A WOA of zero means an individual did not change their answer at all after receiving advice, and 

yik = β0i + β1AlgoConditioni + β2Difficultyk + β3AlgoConditioni × Difficultyk + βXik + εik
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a WOA of 0.5 means an individual took the average of the advice given and their initial answer. According to 
recommended practices, we drop observations where the initial estimate is equal to the recommendation. We 
excluded observations where WOA was greater than two and less than negative one 20.

Independent variables. Diffi lty: Categorical variable representing whether an image was easy or hard. 
Hard images coded as 1.

Algorithmic Advice: Categorical variable representing whether a subject received algorithmic advice for that 
question. Algorithmic advice coded as 1.

Accuracy: To control for skill in estimating crowd size, we calculate a subject’s relative question-level accuracy 
as follows:

Errorik = |InitialAnswerik − CorrectAnswerk|/CorrectAnswerk.
To improve interpretability, we take the inverse of a subject’s error: Accuracyik = Error−1

ik  . Thus, subjects who 
are more accurate had lower error estimates. To control for outliers, we then transform each subject’s accuracy 
into the percentile rank for that question.

Advice Quality: Dummy variable representing whether advice was accurate or inaccurate. Inaccurate advice 
was 100% too high. Accurate advice coded as 1.

Control variables. Initial Confid nce: a subject’s response to the question “How confide t are you that your 
answer is within 10% of the true answer?” prior to receiving advice. 1 = Not at all confide t, 2 = Not very confi-
dent. 3 = Somewhat confide t. 4 = Extremely confide t.

Round Number: Because questions were in a random order, this variable described how many questions a 
subject had worked on thus far. Ranges from one to ten.

Numeracy: A measure to determine how well a subject understands fractions, decimals, and other numbers, 
previously used to establish numeracy in assessments of algorithmic advice  taking12 and medical decisions 34. 
Ranges from one to eleven.

Data availability
The datasets generated and analyzed during the current study are available in the Open Science Foundation 
repository: experiment 1, experiment 2, and experiment 3.

Received: 12 January 2021; Accepted: 23 March 2021
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