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Abstract

Motivated by the Generalized Uncertainty Principle, covariance, and

a minimum measurable time, we propose a deformation of the Heisenberg

algebra and show that this leads to corrections to all quantum mechanical

systems. We also demonstrate that such a deformation implies a discrete

spectrum for time. In other words, time behaves like a crystal. As an

application of our formalism, we analyze the effect of such a deformation

on the rate of spontaneous emission in a hydrogen atom.

1 Introduction

The Heisenberg uncertainty principle predicts that the position of a particle
can, in principle, be measured as accurately as one wants if its momentum is
allowed to remain completely uncertain. However, most approaches to quantum
gravity predict the existence of a minimum measurable length scale, usually the
Planck length. There are also strong indications from black hole physics and
other sources for the existence of a minimum measurable length [1, 2, 3]. This
is because the energy needed to probe spacetime below the Planck length scale
exceeds the energy needed to produce a black hole in that region of spacetime.
Similarly, string theory also predicts a minimum length, as strings are the small-
est probes [4, 5, 6, 7, 8]. Also in loop quantum gravity there exists a minimum
measurable length scale, which turns the big bang into a big bounce [9].

The existence of a minimum measurable length scale in turn requires the
modification of the Heisenberg uncertainty principle into a Generalized Uncer-
tainty Principle (GUP) [4, 5, 6, 7]; there is a corresponding deformation of the
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Heisenberg algebra to include momentum-dependent terms, and a modified co-
ordinate representation of the momentum operators [8, 10, 11, 12, 13, 14, 15].
It may be noted that a different kind of deformation of the Heisenberg algebra
occurs due to Doubly Special Relativity (DSR) theories, which postulate the ex-
istence of a universal energy scale (the Planck scale) [16, 17, 18]. These are also
related to the idea of discrete spacetime [19], spontaneous symmetry breaking of
Lorentz invariance in string field theory [20], spacetime foam models [21], spin-
network in loop quantum gravity [22], non-commutative geometry [23, 24, 25],
ghost condensation in perturbative quantum gravity [26], and Horava–Lifshitz
gravity [27]. It may be noted that DSR has been generalized to curved spacetime
and the resultant theory is called gravity’s rainbow [28, 29, 30, 31, 32, 33]. It
is interesting to note that the deformation from DSR and the deformation from
GUP can be combined into a single consistent deformation of the Heisenberg
algebra [34].

A number of interesting quantum systems have been studied using this de-
formed algebra, such as the transition rate of ultra-cold neutrons in gravitational
field [35], the Lamb shift and Landau levels [36]. There has been another inter-
esting result derived from this deformed algebra, which shows that space needs
to be a discrete lattice, and only multiples of a fundamental length scale (nor-
mally taken as the Planck length) can be measured [37]. Note that minimum
length does not automatically imply discrete lengths, or vice versa. Motivated
by this result, in this paper we analyze the deformation of the algebra and the
subsequent Schrödinger equation consistent with the existence of a minimum
time, and demonstrate that it leads to a discretization of time as well. It may
be noted that discretization of time had also been predicted from a deformed
version of the Wheeler–DeWitt equation [38]. The discretization of time, and
the related breakdown of time reparametrization invariance of a system resem-
bles a crystal lattice in time. Time crystals have been studied recently using a
very different physical motivation, e.g. analyzing superconducting rings, and the
spontaneous breakdown of time-translation symmetry in classical and quantum
systems [39, 40, 41, 42, 43].

2 Observable Time

In this section, we will review the work done on viewing time as a quantum
mechanical observable. It is well known that time cannot be represented as a
self-adjoint operator [44]. This is because the Hamiltonian with a semi-bounded
spectrum does not admit a group of shifts which can be generated from canon-
ically conjugate self-adjoint operators. However, von Neumann had suggested
that restricting quantum mechanics to self-adjoint operators could be quite lim-
iting [45]. In fact, it was demonstrated by von Neumann that the momentum
operator for a free particle bounded by a rigid wall at x = 0 is not a self-adjoint
operator but only a maximal Hermitian operator. This situation is similar to
the time being defined as an observable.

It has been demonstrated that under certain conditions time can be viewed
as a quantum mechanical observable [46, 47, 48, 49, 50]. This is because it is pos-
sible to use symmetric non-self-adjoint operators that satisfy the commutation
relation [51, 52],

[t,H ] = −i~ (1)
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In this formalism, observables are viewed as positive operator valued measures.
Now for a system with Hamiltonian H the map b→ eiHb constitutes a unitary
representation of the time translation group. Thus, the positive operator valued
B, with θ → B(θ) represents a time observation of the system, and it will satisfy
eiHbB(θ)e−iHb = B(θ − b). So for a time observable B, it is possible to define
a symmetric time operator t =

∫

tdB(t). This operator will not be self-adjoint.
However, self-adjointness is not essential for calculating probabilities associated
with the system. So, for any experiment the probability measure θ → p(θ)
can be be associated with the states ρ by defining p(θ) = tr[ρB(θ)], where
θ → B(θ) is a positive operator valued measure [46]. Thus, it is possible to
formally define time as an observable by using a maximal Hermitian (but non-
self-adjoint) operator for time.

It is this definition of time that we will use when formally deforming the
commutation relation. What we intend to do in this paper is to deform this
formal definition of time to be consistent with the existence of a minimum
measurable time interval. Mathematically this situation will be similar to the
GUP deformation of the usual Heisenberg algebra. Physically observable time
can be defined by defining an observable with reference to the evolution of
some non-stationary quantity, if events are characterized by of a specific values
of this quantity [46]. Such a non-stationary quantity could be the tunneling
time for particles. Then the existence of a minimum measurable time interval
will constitute a lower bound on such measurements. The existence of a lower
bound on such measurements will effect the measurement of tunneling time for
particles. In fact, such system have been analyzed by considering time as an
observable [47, 48, 49, 50]. Even though such an analysis is important, we will
concentrate on another problem in this paper. We will analyze the deformation
of commutator between the Hamiltonian and time, and demonstrate that such
a deformation can lead to the existence of a discrete spectrum for time.

3 Minimum Time

We start with the modified Heisenberg algebra, the modified expression of the
momentum operator in position space, and the GUP consistent with all theo-
retical models, correct to O(α2). In this paper, we use units in which c = 1.
We have

[xi, pj ] = i~
[

δij − α|pkpk|1/2δij + α|pkpk|−1/2pipj

+α2pkpkδ
i
j + 3α2pipj

]

, (2)

pi = −i~
(

1− ~α
√

−∂j∂j − 2~2α2∂j∂j

)

∂i, (3)

where α = α0ℓPl/~, and ℓPl is the Planck length. It has been suggested that
the parameter α0 could be situated at an intermediate scale between the elec-
troweak scale and the Planck scale, and this could have measurable consequences
in the near future [36]. However, if such a deformation parameter exists, then it
would be universal for all processes. This is because it would be the parameter
controlling low energy phenomena occurring because of quantum gravitational
effects, and as gravity affects all systems universally, we expect this parameter
also to universally deform all quantum mechanical systems. Also the apparent
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non-local nature of operators in Eq. (3) above poses no problem in one dimen-
sion (space or time). In more than one dimensions, the issue was tackled by
using the Dirac equation [34]. It is also possible to deal with these non-local
derivatives, in more than one dimensions, using the theory of harmonic exten-
sion of functions [56, 57]. The modified Heisenberg algebra is consistent with
the following GUP, in one dimension [36]:

∆x∆p ≥ ~

2

[

1− 2α〈p〉+ 4α2〈p2〉
]

≥ ~

2

[

1 +

(

α
√

〈p2〉
+ 4α2

)

∆p2 + 4α2〈p〉2 − 2α
√

〈p2〉
]

. (4)

One way to arrive at the temporal deformation of the commutator is to use
the principle of covariance and propose the following deformation spacetime
commutators:

[xµ, pν ] = i~
[

δµν − α|pρpρ|1/2δνν + α|pρpρ|−1/2pµpν

+α2pρpρδ
µ
ν + 3α2pµpν

]

, (5)

pµ = −i~
(

1− ~α
√

−∂ν∂ν − 2~2α2∂ν∂ν

)

∂µ. (6)

Even though we could study a temporally deformed system by using the tempo-
ral part of this covariant algebra, we will only deform the commutation relation
between energy and time. This is because the deformation of the spatial part
of the Heisenberg algebra has been thoroughly analyzed [34, 35, 36, 37], and
here we would like to analyze the effect of temporal deformation alone on a sys-
tem. We will also simplify our analysis by only deforming the relation between
time and Hamiltonian of a system. This deformation will be different from the
temporal part of the deformed covariant algebra. It may be noted that such a
deformation only makes sense if we view time as a quantum mechanical observ-
able. Therefore we first define the original commutator of this observable time
with Hamiltonian as [t,H ] = −i~ [51, 52]. Then we deform this commutator of
the observable time with Hamiltonian to

[t,H ] = −i~ [1 + f(H)] , (7)

where f(H) is a suitable function of the Hamiltonian of the system. Thus, the
temporal part of Eq. (6) yields the modified Schrödinger equation

Hψ = i~∂tψ + ~
2α∂2t ψ. (8)

As can be seen from the above, this deformation of quantum Hamiltonian will
produce corrections to all quantum mechanical systems. The temporal part also
implies the following time-energy uncertainty:

∆t∆E ≥ ~

2

[

1− 2α〈E〉+ 4α2〈E2〉
]

≥ ~

2

[

1 +

(

α
√

〈E2〉
+ 4α2

)

∆E2 + 4α2〈E〉2 − 2α
√

〈E2〉
]

. (9)
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4 Time Crystals

The spatially deformed Heisenberg algebra has been used for analyzing a free
particle in a box [37]. The boundary conditions which were used for analyzing
this system were ψ(0) = 0 and ψ(L) = 0, where L was the length of the box.
It was demonstrated that the length of the box was quantized because of the
spatial deformation of the Heisenberg algebra. As this particle was used as a
test particle to measure the length of the box, this implied that space itself was
quantized. The same argument can be now used for the temporal deformation.
This can be done by taking the temporal analog of the particle in a box. The
boundary conditions for this system can be written as ψ(0) = 0 and ψ(T ) = 0,
where T is a fixed interval of time. This is the temporal analog of a particle in
a box, and the particle in this case is a test particle which measures the interval
of time. Now we will demonstrate that in this case the interval of time has to
be quantized. As this particle is a test particle used to measure this interval of
time, we can argue that time itself is quantized.

The temporal part of the deformed Schrödinger equation to first order in α
is given by

i~∂tψ + ~
2α∂2t ψ = Eψ, (10)

and it has the solution

ψ(t) = Ae
−it(1+

√

1−4Eα)
2α~ +Be

−it(1−
√

1−4Eα)
2α~ . (11)

Applying the boundary condition ψ(0) = 0 leads to B = −A, and the second
boundary condition ψ(T ) = 0 leads to

Ae
−iT(1+

√

1−4Eα)
2α~

(

1− e
iT

√

1−4Eα

α~

)

= 0, (12)

which means that either A = B = 0 or both the real and the imaginary parts
of the above equation are zero. The real part is

− 2 sin

(

T

2α~

)

sin

(

T
√
1− 4Eα

2α~

)

= 0. (13)

The imaginary part is

− 2 cos

(

T

2α~

)

sin

(

T
√
1− 4Eα

2α~

)

= 0. (14)

If both are zero, then

sin

(

T
√
1− 4Eα

2α~

)

= 0, (15)

leading to
T
√
1− 4Eα

2α~
= nπ, (16)

where n ∈ Z. This means that

T = nπ
2α~√

1− 4Eα
, (17)
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or expanding in terms of α

T = 2nπ~
(

α+ 2Eα2 + 6E2α3 +O(α4)
)

(18)

i.e. we can only measure time in discrete steps. It is interesting to note that
this discrete interval is dependent on the energy of the system, i.e. the larger
the energy the larger will be this discrete interval of time, but since the en-
ergy dependence is to second and higher orders, this does not change the time
interval by much, except near Planckian energy scales. It may also be noted
that this time interval is of the same order as the minimum time expected di-
rectly from the time-energy uncertainty in Eq. (9). Further, it appears from
Eq. (17) that the minimum time interval diverges as the energy approaches
Planck scale (E ∼ 1/4α). However, this divergence could be unphysical since
the Schrödinger equation (10) is deformed to first order in α only. Finally, as
expected, a continuous time is recovered in the limit in which α → 0. In short,
any physical system with finite energy can only evolve by taking discrete jumps
in time rather than continuously.

5 Rate of Spontaneous Emission

We now apply the above to a concrete quantum mechanical system. The rate
of spontaneous emission in a two-level system is well understood [53]. Here we
shall repeat this analysis for a deformed quantum mechanical system. Now for a
two-level system with eigenstates ψa and ψb, the eigenvalues of the unperturbed
Hamiltonian H0 can be written as

H0ψa = Eaψa, H0ψb = Ebψb. (19)

Any state can be written as a superposition of those eigenstates with the time
dependence found in Eq.(11)

Ψ(t) = caψae
−it

2α~ (1−
√
1−4αEa) + cbψbe

−it

2α~ (1−
√
1−4αEb). (20)

If a time-dependent perturbation H ′(t) was turned on, the wave function Ψ(t)
can still be expressed as the previous equation but with a time-dependent ca(t)
and cb(t), and the goal is to solve for ca(t) and cb(t). This will also hold if
the time evolution of the system is given by a deformed Schrödinger equation.
So, let us assume that this system actually evolves according to the deformed
time-dependent Schrödinger equation,

Hψ = H0ψ +H ′(t)ψ

= i~∂tψ + ~
2α∂2t ψ. (21)

Now neglecting terms of order ~α and ~
2α for a two-level system, we obtain

caH
0ψae

−iǫat/~ + cbH
0ψbe

−iǫbt/~ + caH
′ψae

−iǫat/~ + cbH
′ψbe

−iǫbt/~

= i~
(

ċaψae
−iǫat/~ + ċbψbe

−iǫbt/~
)

+ caEaψae
−iǫat/~ + cbEbψbe

−iǫbt/~. (22)

To simplify that last expression, we defined

ǫa =
1

2α

(

1−
√

1− 4αEa

)

, ǫb =
1

2α

(

1−
√

1− 4αEb

)

. (23)
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It may be noted that in the limit α → 0, we obtain ǫa → Ea and ǫb → Eb. The
first two terms cancel the last two terms. Now taking the inner product with
ψa and solving for ċa, we obtain

ċa = − i

~

(

caH
′
aa + cbH

′
abe

−iω0t
)

. (24)

Here we have defined

H ′
ij = 〈ψi|H ′|ψj〉,

ω0 =
ǫb − ǫa

~

=

√
1− 4αEa −

√
1− 4αEb

2α~
. (25)

Similarly, the inner product with ψb picks out ċb,

ċb = − i

~

(

cbH
′
bb + caH

′
bae

iω0t
)

. (26)

Since in most applications the diagonal elements of H ′ vanish, we get the sim-
plified equations

ċa = − i

~
H ′

abe
−iω0tcb, ċb = − i

~
H ′

bae
iω0tca. (27)

These equations have the same form as the un-deformed two-level system,
except that in these equations ω0 is modified. Thus, the standard analysis for
the un-deformed two-level system also holds for a deformed two-level system. So
if an atom is exposed to a sinusoidally oscillating electric field E = E0 cos(ωt)k̂,
then the perturbation Hamiltonian can be written as

H ′(t) = −qE0r cos(ωt) (28)

and
H ′

ba = −pE0 cos(ωt), (29)

where p = q〈ψb|r|ψa〉 is the electric dipole radiation. Repeating the analysis
for the un-deformed two-level system [53], we can write the rate of spontaneous
emission A for the deformed system as

A =
ω3
0 |p|2

3πǫ0~
. (30)

Expanding to first order in α, we obtain

A =
(Eb − Ea)

3|p|2
3πǫ0~4

+
(Eb − Ea)

3(Ea + Eb)|p|2
πǫ0~4

α. (31)

To get an order of magnitude estimate of the effect of the extra term in Eq.
(31), we consider the spontaneous emission from a transition between the first
and second energy levels in the hydrogen atom. Now for these levels, we have
E1 = 13.6eV, E2 = E1/4, and |p| ∼ 0.7qa0, where a0 is the Bohr radius. Thus,
we obtain

A ≈ 2.1 + 1.7× 10−17α [m
−1

] (32)

≈ 6.2× 108 + 5.1× 10−9α [s
−1

].
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The uncertainty in measuring the rate of spontaneous emission for hydrogen
atom is ±0.3 % [54]. So, the bound on α0 from the rate of spontaneous emission
in a hydrogen atom is given by

α0 < 7.2× 1023. (33)

Hence, at this scale the effect of the rate of spontaneous emission in hydrogen
can be effected by the temporal deformation proposed in this paper. If such a
deformation scale exists at this scale in nature, future measurements might be
able to detect it.

It may be noted that we can also use the lifetime of particles to set bounds
on α0, for the modified Schrödinger equation. For example, the tau has a
lifetime of (290.3 ± 0.5) × 10−15 s [55], and since the minimum time from Eq.
(18) must be less than the uncertainty in measuring the tau’s life time, then
2π~α < 0.5× 10−15. This means that α0 < 1.5× 1027. However, the bound on
α0 from the hydrogen atom is more stringent than the bound on α0 from the
lifetime of particles. So, in the case that a minimum measurable time exists in
nature, we are more likely to first observe its effects on the rate of spontaneous
emission in hydrogen atoms.

6 Conclusions

We have shown here that the existence of a minimum measurable time scale in a
quantum theory naturally leads to the discretization of time. This is similar to
the existence of a minimum measurable length scale leading to a discretization
of space. Thus, a crystal in time gets naturally formed by the existence of
a minimum measurable time scale in the universe. Time crystals have been
studied recently for systems in which time reparametrization is broken, just
as spatial translation is broken in regular crystals. Time crystals have also
been studied earlier for analyzing superconducting rings [39, 40, 41, 42, 43].
We also analyzed the effect of such a deformation on the rate of spontaneous
emission in a hydrogen atom. It would be interesting to analyze a combination
of minimum length and minimum time deformations of quantum mechanics to
demonstrate a discretization of space and time in four dimensions. We expect
to obtain non-local fractional derivative terms in that case, which may possibly
be dealt with using a theory of harmonic extension of functions [56, 57], or via
the Dirac equation approach [34]. It may be noted that it is conceptually useful
to view the minimum measurable time as a component of a minimum Euclidean
four volume with complex time, and then analytically continue the results to a
Lorentz manifold. However, as we analyzed a system with Galilean symmetry,
we did not to go through this procedure.

It is expected that the deformation of the Hamiltonian studied here will affect
all physical systems. Thus for example, one can study the decay rates of particle
and unstable nuclei using this deformed time evolution, which are expected
to change as well. In fact, by fixing the value of this deformation parameter
just below the experimentally measured limit, it might be possible to devise
tests for detecting such deformation of time evolution of quantum mechanics.
The deformed Hamiltonian should affect time-dependent perturbation theory
as well. For example, the out-of-equilibrium Anderson model has been studied
using the time-dependent density functional theory [58]. This has important
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applications for time-dependent processes in an open system where different
scattering processes take place. This behavior will get modified due to this
deformation of quantum mechanics. Similarly the quantum mechanical systems
for which the strict adiabatic approximation fails, but which do not escape too
far from the adiabatic limit, can be analyzed using a time-dependent adiabatic
deformation of the theory [59]. It would be interesting to analyze the effect
of having a minimum measurable time for such a time-dependent adiabatic
deformation of the theory.
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